On the arithmetic properties of a number $\sqrt[3]{2}+ \sqrt{3}$
Matematičeskoe obrazovanie, no. 3 (2020), pp. 2-7
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that this number is irrational and is an integer algebraic number of degree equal to six.
Keywords:
irrational number, algebraic integer, power of an algebraic integer.
@article{MO_2020_3_a0,
author = {V. E. Volkov and V. B. Sherstyukov},
title = {On the arithmetic properties of a number $\sqrt[3]{2}+ \sqrt{3}$},
journal = {Matemati\v{c}eskoe obrazovanie},
pages = {2--7},
year = {2020},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MO_2020_3_a0/}
}
V. E. Volkov; V. B. Sherstyukov. On the arithmetic properties of a number $\sqrt[3]{2}+ \sqrt{3}$. Matematičeskoe obrazovanie, no. 3 (2020), pp. 2-7. http://geodesic.mathdoc.fr/item/MO_2020_3_a0/
[1] Sadovnichii V.A., Podkolzin A.S., Zadachi studencheskikh olimpiad po matematike, Nauka, M., 1978, 208 pp.
[2] Zhukov A., “Algebraicheskie i transtsendentnye chisla”, Kvant, 1998, no. 4, Kaleidoskop «Kvanta»
[3] Gelfond A.O., Transtsendentnye i algebraicheskie chisla, GITTL, M., 1952, 224 pp.
[4] Galochkin A.I., Nesterenko Yu.V., Shidlovskii A.B., Vvedenie v teoriyu chisel, Izd-vo Mosk. un-ta, M., 1984, 147 pp. | MR
[5] Galieva L.I., Galyautdinov I.G., “Ob odnom klasse uravnenii, razreshimykh v radikalakh”, Izv. vuzov. Matem., 2011, no. 2, 22–30 | MR | Zbl