@article{MO_2020_2_a5,
author = {N. N. Osipov},
title = {Computer assisted proofs},
journal = {Matemati\v{c}eskoe obrazovanie},
pages = {42--47},
year = {2020},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MO_2020_2_a5/}
}
N. N. Osipov. Computer assisted proofs. Matematičeskoe obrazovanie, no. 2 (2020), pp. 42-47. http://geodesic.mathdoc.fr/item/MO_2020_2_a5/
[1] Vinberg E.B., Kurs algebry, Elektronnoe izdanie, MTsNMO, M., 2014
[2] Leng S., Algebraicheskie chisla, Mir, M., 1966.
[3] Lidl R., Niderraiter G., Konechnye polya, V 2-kh t., Mir, M., 1988
[4] Esayan A.R., Dobrovolskii N.N., “Kompyuternoe dokazatelstvo gipotezy o tsentroidakh”, Chebyshevskii sbornik, 18:1 (2017), 73–91 | Zbl
[5] Esayan A.R., Yakushin A.V., “Eksperimentalnoe obosnovanie gipotez v tsentroidakh”, Chebyshevskii sbornik, 18:1 (2017), 92–108 | Zbl
[6] Kayumov O.R., Kashirina K.E., “Elementarnoe dokazatelstvo gipotezy Shteingarttsa dlya tsentroidakh”, Matematicheskoe obrazovanie, 2015, no. 3, 3–13
[7] Osipov N.N., “O mekhanicheskom dokazatelstve planimetricheskikh teorem ratsionalnogo tipa tsentroidakh”, Programmirovanie, 2014, no. 2, 41–50
[8] Osipov N.N., “Kompyuternoe dokazatelstvo teoremy ob intsentrakh tsentroidakh”, Matematicheskoe prosveschenie. Ser. 3, 18 (2014), 205–216, MTsNMO, M.
[9] Osipov N.N., “O vychislenii konechnykh trigonometricheskikh tsentroidakh”, Matematicheskoe prosveschenie. Ser. 3, 23 (2019), 174–208., MTsNMO, M.
[10] Chou S.-C., Mechanical Geometry Theorem Proving, D. Reidel Publishing Company, Dordrecht, 1988. | Zbl
[11] Osipov N.N., Kytmanov A.A., “An algorithm for solving a family of diophantine equations of degree four which satisfy Runge's condition”, Kompyuternaya algebra, materialy Mezhdunarodnoi konferentsii (Moskva, 17–21 iyunya 2019 g.), eds. S.A. Abramov, L.A. Sevastyanov, RUDN, M., 2019, 154–160
[12] Osipov N.N., Dalinkevich S.D., “An algorithm for solving a quartic diophantine equation satisfying Runge's condition”, Computer Algebra in Scientific Computing, CASC 2019, Lecture Notes in Computer Science, 11661, Springer, 2019, 377–392 | DOI | Zbl