About the task “Knights of the King Arthur” for developing multilevel tasks
Matematičeskoe obrazovanie, no. 1 (2020), pp. 24-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Solutions to the problem of selecting “non-neighboring” objects are given. The cases of placing objects on a circle and on a straight line are considered. The irreversibility of the arrangement and selection of homogeneous objects in combinatorics is noted. A method of selecting “non-neighbors” is proposed, which is based on the interpretation of the concept of “non-neighbors” as objects separated by a common “neighbor”. Algorithms for selecting even and odd numbers of objects and a method for “through one” selecting are proposed.
Keywords: combinatorial problems, restrictions on the order of choice.
@article{MO_2020_1_a2,
     author = {V. K. Gavrilov},
     title = {About the task {{\textquotedblleft}Knights} of the {King} {Arthur{\textquotedblright}} for developing multilevel tasks},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {24--27},
     year = {2020},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2020_1_a2/}
}
TY  - JOUR
AU  - V. K. Gavrilov
TI  - About the task “Knights of the King Arthur” for developing multilevel tasks
JO  - Matematičeskoe obrazovanie
PY  - 2020
SP  - 24
EP  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MO_2020_1_a2/
LA  - ru
ID  - MO_2020_1_a2
ER  - 
%0 Journal Article
%A V. K. Gavrilov
%T About the task “Knights of the King Arthur” for developing multilevel tasks
%J Matematičeskoe obrazovanie
%D 2020
%P 24-27
%N 1
%U http://geodesic.mathdoc.fr/item/MO_2020_1_a2/
%G ru
%F MO_2020_1_a2
V. K. Gavrilov. About the task “Knights of the King Arthur” for developing multilevel tasks. Matematičeskoe obrazovanie, no. 1 (2020), pp. 24-27. http://geodesic.mathdoc.fr/item/MO_2020_1_a2/

[1] Lyutikas V.S., Fakultativnyi kurs po matematike: Teoriya veroyatnostei, Prosveschenie, M., 1990

[2] Vilenkin N.Ya. i dr., Kombinatorika, «FIMA» MTsNMO, M., 2006 | MR

[3] A.M. Prokhorov (red.), BES Fizika, «Bolshaya Rossiiskaya entsiklopediya», M., 1999

[4] Gavrilov V.K., “O zadache «Rytsari korolya Artura»”, Sbornik trudov konferentsii «Matematicheskoe obrazovanie v tsifrovom obschestve», Moskovskii gorodskoi pedagogicheskii universitet (Samarskoe otdelenie), Samara, 2019, 98–99

[5] Gavrilov V.K., “Podobie treugolnikov i sekuschikh v teoreme Menelaya”, Informatsionnye tekhnologii v matematike i matematicheskom obrazovanii, Materialy VI Vserossiiskoi nauchno-metodicheskoi konferentsii s mezhdunarodnym uchastiem. Elektronnoe izdanie, Krasnoyarsk, 2017