The trajectory method in combinatorics and probability theory
Matematičeskoe obrazovanie, no. 4 (2019), pp. 43-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

To solve a combinatorial or probabilistic problem, it is often advisable to use its geometric interpretation, reducing the problem to counting the number of paths (trajectories), with certain properties. This is the trajectory method.
Keywords: combinatorial problems, probabilistic problems, trajectory method, combinatorial structures, geometric interpretation of structures.
@article{MO_2019_4_a4,
     author = {N. A. Rashevsky},
     title = {The trajectory method in combinatorics and probability theory},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {43--57},
     year = {2019},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2019_4_a4/}
}
TY  - JOUR
AU  - N. A. Rashevsky
TI  - The trajectory method in combinatorics and probability theory
JO  - Matematičeskoe obrazovanie
PY  - 2019
SP  - 43
EP  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MO_2019_4_a4/
LA  - ru
ID  - MO_2019_4_a4
ER  - 
%0 Journal Article
%A N. A. Rashevsky
%T The trajectory method in combinatorics and probability theory
%J Matematičeskoe obrazovanie
%D 2019
%P 43-57
%N 4
%U http://geodesic.mathdoc.fr/item/MO_2019_4_a4/
%G ru
%F MO_2019_4_a4
N. A. Rashevsky. The trajectory method in combinatorics and probability theory. Matematičeskoe obrazovanie, no. 4 (2019), pp. 43-57. http://geodesic.mathdoc.fr/item/MO_2019_4_a4/

[1] Vilenkin N.Ya., Ivashev-Musatov O.S., Shvartsburd S.I., Algebra i matematicheskii analiz dlya 11 klassa, Uchebnoe posobie dlya uchaschikhsya shkol i klassov s uglublennym izucheniem matematiki, 6, Prosveschenie, M., 1998

[2] Baranov V.I., Stechkin B.S., Ekstremalnye kombinatornye zadachi i ikh prilozheniya, Nauka, M., 1989

[3] Vilenkin N.Ya., Kombinatorika, Nauka, M, 1969. | MR

[4] Gnedenko B.V., Vvedenie v spetsialnost matematika, Nauka, M., 1991 | MR

[5] Gnedenko B.V., Kurs teorii veroyatnostei, 6 pererabotannoe i dopolnennoe, Nauka, M., 1988 | MR

[6] Gnedenko B.V., Korolyuk V.S., “O maksimalnom raskhozhdenii dvukh empiricheskikh raspredelenii”, Doklady AN SSSR, 80:4 (1951), 525–528. | Zbl

[7] Ezhov I.I., Skorokhod A.V., Yadrenko M.I., Elementy kombinatoriki, Nauka, M., 1977

[8] Erusalimskii Ya.M., “2- i 3-puti na grafe-reshetke i kombinatornye tozhdestva”, Izvestiya vuzov. Severo-Kavkazskii region. Estestvennye nauki, 2017, no. 1, 25–30

[9] Dorogovtsev A.Ya. i dr., Teoriya veroyatnostei, Sbornik zadach, ed. A.V. Skorokhoda, Vyscha shkola, Kiev, 1980 | MR

[10] Chandrasekar S., Stokhasticheskie problemy v fizike i astronomii, GIIL, M., 1947

[11] Chashkin A.V., Lektsii po diskretnoi matematike, Uchebnoe posobie, MGU Mekhmat, M., 2007

[12] Shiryaev A.N., Veroyatnost, Nauka, M., 1980.

[13] Evnin A.Yu., “Dve zametki po kombinatorike”, Matematicheskoe obrazovanie, 2000, no. 3(14), 27–34

[14] Yaglom A.M., Yaglom I.M., Neelementarnye zadachi v elementarnom izlozhenii, «Biblioteka matematicheskogo kruzhka», GTTI, M., 1954 | MR

[15] Rashevskii N.A.