Mots-clés : chain line.
@article{MO_2018_4_a3,
author = {V. Yu. Bodryakov and A. A. Bykov},
title = {The history of hyperbolic functions research and some applications},
journal = {Matemati\v{c}eskoe obrazovanie},
pages = {18--29},
year = {2018},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MO_2018_4_a3/}
}
V. Yu. Bodryakov; A. A. Bykov. The history of hyperbolic functions research and some applications. Matematičeskoe obrazovanie, no. 4 (2018), pp. 18-29. http://geodesic.mathdoc.fr/item/MO_2018_4_a3/
[1] Bernoulli Jakob, “Analysis problematis antehac propositi, de inventione lineae descensus a corpore gravi percurrendae uniformiter, sic ut temporibus aequalibus aequales altitudines eme tiantur: et alterius cujusdam problematis proposition”, Acta Eruditorum. - Lipsia, 1690, May, 217–219
[2] Mencke O., “Solutions of the problem proposed by J.B.”, Acta Eruditorum. - Lipsia, 1691, June, 273.
[3] Bernoulli Johannis, “Solutio problematic funicularii”, Acta Eruditorum, 277, June (1691), 274–276
[4] Leibniz G.W., “Solutio problematic catenarii”, Acta Eruditorum, 277, June (1691), 277–281 | MR
[5] Huygens Christiani, “Dynaste Zulichemii, solutio problematis funicularii”, Acta Eruditorum, 277, June (1691), 281–282
[6] Euler Leonhard, Introductio in Analysin Infinitorum, v. 2, Apud Marcum-Michaelem Bousquet Socios, Lausannæ, 1748, 398 pp. | MR
[7] Riccati Vincenzo, Opuscula physico-mathematica. Ad res., Physicas Mathematicas pertinentium, v. 1, Apud Lae lium a Vulpe Inftituti Scientiarium Typographum, Boboniae, 1757, 173 pp.
[8] Lambert Johann H., “Observations trigonométriques”, Mem. Acad. Sci., 24 (1770), 327–354, Berlin
[9] Lambert J.H., “Mémoire sur quelques propriétés remarquables des quantités transcendantes circulaires et logarithmiques”, Histoire de l'Académie de Berlin 1761, 1768, 265–322; Vgl. Hierzu Alfred Pringsheim, “Uber die ersten Beweise der Irrationalität von $e$ und $\pi$”, Sitzungsb., d. math.-phys. Kl. dk bayer. -Akad. d. Wiss., 28 (1898), 325–337
[10] Gudermann C., Theorie der Potenzial-oder cyclisch-hyperbolischen Funktionen, Gedruckt und verlegt bei G. Reimer, Berlin, 1833, 354 pp. | MR
[11] Galilei G., Besedy i matematicheskie dokazatelstva, kasayuschiesya dvukh novykh otraslei nauki, otnosyaschikhsya k mekhanike i mestnomu dvizheniyu sinora Galileo Galileya Lincheo, filosofa i pervogo matematika svetleishego velikogo gertsoga Toskanskogo. S prilozheniem o tsentrakh tyazhesti razlichnykh tel, Gosudarstvennoe tekhniko-teoreticheskoe izdatelstvo, M.-L., 1934, 273–274
[12] Shtaerman I.Ya., Giperbolicheskie funktsii, Ob'edinennoe nauchno-tekhnicheskoe izdatelstvo NKTP SSSR, M., 1935, 55 pp.
[13] Yates R.C., “Catenary”, A Handbook on Curves and Their Properties, J.W. Edwards, Ann Arbor, MI, 1952, 12–14 | MR
[14] Shervatov V.G., Giperbolicheskie funktsii, Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoi literatury, M., 1954, 55 pp.
[15] Smith D.E., History of Mathematics, v. 2, Special Topics of Elementary Mathematics, Dover, New York, 1958, 327 pp. | MR | Zbl
[16] Yanpolskii A.R., Giperbolicheskie funktsii, Gosudarstvennoe izdatelstvo fiziko-matematicheskoi literatury, M., 1960, 194 pp.
[17] Lawrence J.D., A Catalog of Special Plane Curves, Dover, New York, 1972, 195, 199–200 | MR
[18] MacTutor History of Mathematics archive, (data obrascheniya: 21.05.2018) http://www-history.mcs.st-and.ac.uk/
[19] Giperbolicheskie funktsii, (data obrascheniya: 21.05.2018) https://ru.wikipedia.org/wiki/
[20] Merkin D.R., Vvedenie v mekhaniku gibkoi niti, Nauka, M., 1980, 240 pp. (data obrascheniya: 21.05.2018) http://www.twirpx.com/file/357235
[21] Pappas T., “The Catenary the Parabolic Curves”, The Joy of Mathematics, Wide World Publ. / Tetra, San Carlos, CA, 1989, 34
[22] Denzler J., Hinz A.M., “Catenaria vera — the true catenary”, Expositiones Mathematicae, 17 (1999), 117–142 | MR | Zbl
[23] Nedev S., “The catenary — an ancient problem on the computer screen”, European Journal of Physics, 21: 5 (2000), 451–457 | DOI
[24] Barnett J.H., “Enter, stage center: the early drama of the hyperbolic functions”, Mathematics Magazine, 77:1, February (2004), 15–30 | DOI | MR | Zbl
[25] Mareno A., English L.Q., “The stability of the catenary shapes for a hanging cable of unspecified length”, European Journal of Physics, 30:1 (2008), 97–108 | DOI
[26] Bukowski J., “Christiaan Huygens and the problem of the hanging chain”, The College Mathematical Journal, 39, January (2008), 2–11 | DOI | MR | Zbl
[27] Sobbich E.M., “Kurva Catenary Dan Aproksimasi Parabola, Evaluasi Perbedaan Titik Koordinat Dan Panjang Busur [English: Catenary Curve and Parabolic Approximation, Evaluation of Coordinate Point Difference and Arc Length]”, Journal Mat Stat, 9 (2009), 2
[28] Jwa Y., Sohn G., “A piecewise catenary curve model growing for 3D power line reconstruction”, Photogrammetric Engineering Remote Sensing, 78:12 (2012), 1227–1240 | DOI
[29] Wang C.Y., Wang C.M., “Analytical Solutions for Catenary Domes”, Journal of Engineering Mechanics, 141:2 (2015), 06014019 | DOI
[30] Ben-Abu Y., Eshach H., Yizhaq H., “Interweaving the Principle of Least Potential Energy in School and Introductory University Physics Courses”, Symmetry, 9:3 (2017), 45, 12 pp. | DOI
[31] Carlson S.C., “Catenary mathematics”, ENCYCLOPÆDIA BRITANNICA https://www.britannica.com/science/catenary | MR
[32] Fedoseev V.M., “Laboratornye raboty po matematike s razvitiem temy”, Matematika v Shkole, 2010, no. 6, 62–69
[33] Nicol Imperi, The determination of the equation of the catenary by Huygens, Leibniz and Bernoulli, PhD in Mathematics, University of Rome, Rome, 2015, 55 pp.
[34] Starova O.A., “Tsepnaya liniya”, Matematika. Vsë dlya uchitelya, 2015, no. 12, 31–33
[35] Saranin V.A., “K zadache o visyachei tsepochke”, Uchebnaya fizika, 2016, no. 3, 30–33
[36] Ochkov V.F., Tsurikov G.N., Chudova Yu.V., “Ostorozhno: Tsepnaya funktsiya”, Informatika v shkole, 2017, no. 4(127), 58–62
[37] Aksenova O.V., Bodryakov V.Yu., “Sistema raznourovnevykh laboratornykh rabot po matematike s primeneniem IKT kak instrument frontalnogo formirovaniya uchebno-issledovatelskikh i tvorcheskikh umenii obuchayuschikhsya”, Sb. materialov XXVIII Mezhdunarodnoi konferentsii “Sovremennye informatsionnye tekhnologii v obrazovanii” (Moskva–Troitsk: Fond “BAITIK”, 27 iyunya 2017 g.), 460–462, 602 pp. (data obrascheniya: 06.05.2018) http://ito.bytic.ru/uploads/files/conf_2017.pdf
[38] Ochkov V.F., “Tsepnaya liniya = fizika + matematika + informatika”, Informatika v shkole, 2018, no. 3, 56–63 http://twt.mpei.ac.ru/ochkov/catenary.pdf
[39] Aksenova O.V., Bodryakov V.Yu., “Laboratornye raboty po matematike s primeneniem IKT kak instrument formirovaniya issledovatelskikh umenii studentov pedagogicheskogo vuza”, Sb. dokladov i nauchnykh statei Vserossiiskoi nauchno-prakticheskoi konferentsii “Sostoyanie i perspektivy razvitiya IT-obrazovaniya”, posvyaschennoi 50-letiyu Chuvashskogo gosudarstvennogo universiteta im. I.N. Ulyanova (Cheboksary, 16–18 noyabrya 2017 g.), Izd-vo Chuvashskogo gos. un-ta, Cheboksary, 2018, 175–181, 520 pp.
[40] Aksenova O.V., Bodryakov V.Yu., Bykov A.A., Toporova N.V., “Optimizatsionnaya zadacha o provisanii tsepnoi linii”, Aktualnye voprosy prepodavaniya matematiki, informatiki i informatsionnykh tekhnologii, mezhvuzovskii sbornik nauchnykh rabot, Ural. gos. ped. un-t., Ekaterinburg, 2018, 123–130, 314 pp.
[41] Aksenova O.V., Bodryakov V.Yu., “Naturnyi eksperiment s primeneniem sredstv IKT i mobilnykh ustroistv kak instrument formirovaniya issledovatelskikh umenii studentov”, Vestnik Rossiiskogo universiteta druzhby narodov, Informatizatsiya obrazovaniya, 15, no. 4, 2018