A method of deriving the Wallis formula and of decomposition of hyperbolic functions into infinite products
Matematičeskoe obrazovanie, no. 2 (2018), pp. 40-43
Cet article a éte moissonné depuis la source Math-Net.Ru
A simple method of decomposition of the hyperbolic tangent function into infinite product by the potential theory approach is suggested. This implies the famous Wallis formula.
Keywords:
Hyperbolic tangent
Mots-clés : Wallis formula.
Mots-clés : Wallis formula.
@article{MO_2018_2_a3,
author = {S. N. Sazonov},
title = {A method of deriving the {Wallis} formula and of decomposition of hyperbolic functions into infinite products},
journal = {Matemati\v{c}eskoe obrazovanie},
pages = {40--43},
year = {2018},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MO_2018_2_a3/}
}
S. N. Sazonov. A method of deriving the Wallis formula and of decomposition of hyperbolic functions into infinite products. Matematičeskoe obrazovanie, no. 2 (2018), pp. 40-43. http://geodesic.mathdoc.fr/item/MO_2018_2_a3/
[1] A.P. Yushkevich (red.), Istoriya matematiki s drevneishikh vremën do nachala XIX stoletiya, v. I–III, Nauka, M., 1970
[2] Whiteside D.T., “Patterns of Matematical Thought in the later Seventeenth Centur”, Arch. Hist. Exact Sci., I:4 (1961), 179–388 | DOI | MR | Zbl
[3] Smirnov V.I., Kurs vysshei matematiki, chast 2, gl. III, v. III, BKhV Peterburg, SPb:, 2010, 816 pp. | MR
[4] Friedmann T., Hagen C.R., “Quantum Mechanical Derivation of the Wallis Formula for $\pi $”, J. Math. Phys, 56:11 (2015), 112101 | DOI | MR | Zbl
[5] Tamm I.E., Osnovy teorii elektrichestva, glava 1, Nauka, M., 1976
[6] Landau L.D., Lifshits E.M., Elektrodinamika sploshnykh sred, §44, Nauka, M., 1983, 616 pp.