The Grinberg theorem and its application
Matematičeskoe obrazovanie, no. 1 (2018), pp. 60-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the Grinberg theorem and its application to problems of the graphs theory.
Keywords: planar graph, Hamiltonian graph, Greenberg theorem.
@article{MO_2018_1_a8,
     author = {A. Yu. Evnin},
     title = {The {Grinberg} theorem and its application},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {60--65},
     year = {2018},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2018_1_a8/}
}
TY  - JOUR
AU  - A. Yu. Evnin
TI  - The Grinberg theorem and its application
JO  - Matematičeskoe obrazovanie
PY  - 2018
SP  - 60
EP  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MO_2018_1_a8/
LA  - ru
ID  - MO_2018_1_a8
ER  - 
%0 Journal Article
%A A. Yu. Evnin
%T The Grinberg theorem and its application
%J Matematičeskoe obrazovanie
%D 2018
%P 60-65
%N 1
%U http://geodesic.mathdoc.fr/item/MO_2018_1_a8/
%G ru
%F MO_2018_1_a8
A. Yu. Evnin. The Grinberg theorem and its application. Matematičeskoe obrazovanie, no. 1 (2018), pp. 60-65. http://geodesic.mathdoc.fr/item/MO_2018_1_a8/

[1] Krasnov M.L., Kiselëv A.I., Makarenko G.I. i dr., Vsya vysshaya matematika: uchebnik, v. 7, LENAND, M., 2017, 208 pp.

[2] Evnin A.Yu., Zadachnik po diskretnoi matematike, 6, LENAND, M., 2016, 272 pp.

[3] Grinberg E.Ya., “Ploskie odnorodnye grafy stepeni tri bez gamiltonovykh tsiklov”, Latv. matem. ezhegodnik, 4 (1968), 51–58 | MR | Zbl

[4] Chia G.L., “Grinberg's Criterion Applied to Some Non-Planar Graphs”, Ars Combinatoria, 100 (2011), 3–7 | MR | Zbl

[5] Jiang H., Non-Hamiltonian Holes in Grid Graphs, 2012, 10 pp., arXiv: 1204.5284

[6] Jooyandex M., “Planar Hypohamiltonian Graphs on 40 Vertices”, Journal of Graph Theory, 84:2 (2017), 121–133 | DOI | MR