The Grinberg theorem and its application
Matematičeskoe obrazovanie, no. 1 (2018), pp. 60-65
Cet article a éte moissonné depuis la source Math-Net.Ru
On the Grinberg theorem and its application to problems of the graphs theory.
Keywords:
planar graph, Hamiltonian graph, Greenberg theorem.
@article{MO_2018_1_a8,
author = {A. Yu. Evnin},
title = {The {Grinberg} theorem and its application},
journal = {Matemati\v{c}eskoe obrazovanie},
pages = {60--65},
year = {2018},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MO_2018_1_a8/}
}
A. Yu. Evnin. The Grinberg theorem and its application. Matematičeskoe obrazovanie, no. 1 (2018), pp. 60-65. http://geodesic.mathdoc.fr/item/MO_2018_1_a8/
[1] Krasnov M.L., Kiselëv A.I., Makarenko G.I. i dr., Vsya vysshaya matematika: uchebnik, v. 7, LENAND, M., 2017, 208 pp.
[2] Evnin A.Yu., Zadachnik po diskretnoi matematike, 6, LENAND, M., 2016, 272 pp.
[3] Grinberg E.Ya., “Ploskie odnorodnye grafy stepeni tri bez gamiltonovykh tsiklov”, Latv. matem. ezhegodnik, 4 (1968), 51–58 | MR | Zbl
[4] Chia G.L., “Grinberg's Criterion Applied to Some Non-Planar Graphs”, Ars Combinatoria, 100 (2011), 3–7 | MR | Zbl
[5] Jiang H., Non-Hamiltonian Holes in Grid Graphs, 2012, 10 pp., arXiv: 1204.5284
[6] Jooyandex M., “Planar Hypohamiltonian Graphs on 40 Vertices”, Journal of Graph Theory, 84:2 (2017), 121–133 | DOI | MR