Constructing quadrilaterals with prescribed properties
Matematičeskoe obrazovanie, no. 1 (2018), pp. 10-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some types of quadrilaterals which can be constructed on the basis of a given triangle are analyzed.
Keywords: the construction of a quadrilateral by carrying out Chevian from two vertices of a triangle, the circle of Soddy, the point of Mikel.
@article{MO_2018_1_a2,
     author = {S. M. Takhayev},
     title = {Constructing quadrilaterals with prescribed properties},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {10--32},
     year = {2018},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2018_1_a2/}
}
TY  - JOUR
AU  - S. M. Takhayev
TI  - Constructing quadrilaterals with prescribed properties
JO  - Matematičeskoe obrazovanie
PY  - 2018
SP  - 10
EP  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MO_2018_1_a2/
LA  - ru
ID  - MO_2018_1_a2
ER  - 
%0 Journal Article
%A S. M. Takhayev
%T Constructing quadrilaterals with prescribed properties
%J Matematičeskoe obrazovanie
%D 2018
%P 10-32
%N 1
%U http://geodesic.mathdoc.fr/item/MO_2018_1_a2/
%G ru
%F MO_2018_1_a2
S. M. Takhayev. Constructing quadrilaterals with prescribed properties. Matematičeskoe obrazovanie, no. 1 (2018), pp. 10-32. http://geodesic.mathdoc.fr/item/MO_2018_1_a2/

[1] Yiu P., Euclidean Geometry, 1998

[2] Josefsson M., Forum Geom, 10–14, 2010–2014 | MR

[3] Minculete N., Forum Geom, 9, 2009 | MR | Zbl

[4] Ehrmann J.P., “Some geometric constructions”, Forum Geom, 6, 2006, 327–334 | MR | Zbl

[5] Kimberling C., Encyclopedia of Triangle Centers, https://faculty.evansville.edu/ck6/encyclopedia/

[6] Kokster G.S.M., Vvedenie v geometriyu, glava 1, M., 1966 | MR

[7] Delone B., Zhitomirskii O., Zadachnik po geometrii, zadacha 85, M., 1950

[8] Djukic D., Jankovic V.,, The IMO Compendium, Springer, 2006 | MR | Zbl

[9] Vitas K.,, Art of Problem Solving, , 2006 http://www.artofproblemsolving.com/Forum/viewtopic.php?t=110887

[10] Salazar J.C., Bicentric Quadrilateral 3, Art of Problem Solving, , 2005 http://www.artofproblemsolving.com/Forum/viewtopic.php?t=38991

[11] Salazar J.C., Bicentric Quadrilateral 3, Art of Problem Solving, 2005 http://www.artofproblemsolving.com/Forum/viewtopic.php?t=406453

[12] Barbu C., Patrascu I., Forum Geom, 12, 2012, 149–152 | MR | Zbl