Axiomatic method in a higher education course of mathematical logics: from Euclid to Gödel
Matematičeskoe obrazovanie, no. 4 (2017), pp. 28-44
Cet article a éte moissonné depuis la source Math-Net.Ru
A short history and theory of axiomatic method up to Gödel theorems is presented.
Keywords:
axiomatic method, informal axiomatic theory, formal axiomatic theory.
@article{MO_2017_4_a5,
author = {I. V. Suchan and O. V. Ivanisova and G. G. Kravchenko},
title = {Axiomatic method in a higher education course of mathematical logics: from {Euclid} to {G\"odel}},
journal = {Matemati\v{c}eskoe obrazovanie},
pages = {28--44},
year = {2017},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MO_2017_4_a5/}
}
TY - JOUR AU - I. V. Suchan AU - O. V. Ivanisova AU - G. G. Kravchenko TI - Axiomatic method in a higher education course of mathematical logics: from Euclid to Gödel JO - Matematičeskoe obrazovanie PY - 2017 SP - 28 EP - 44 IS - 4 UR - http://geodesic.mathdoc.fr/item/MO_2017_4_a5/ LA - ru ID - MO_2017_4_a5 ER -
I. V. Suchan; O. V. Ivanisova; G. G. Kravchenko. Axiomatic method in a higher education course of mathematical logics: from Euclid to Gödel. Matematičeskoe obrazovanie, no. 4 (2017), pp. 28-44. http://geodesic.mathdoc.fr/item/MO_2017_4_a5/
[1] Stoll R.R., Mnozhestva. Logika. Aksiomaticheskie teorii, Prosveschenie, M., 1968, 232 pp.
[2] Smilga V.P., V pogone za krasotoi, Molodaya gvardiya, M., 1968, 288 pp.
[3] Kolmogorov A.N., Dragalin A.G., Vvedenie v matematicheskuyu logiku, Izdatelstvo Moskovskogo universiteta, M., 1982, 120 pp.
[4] Igoshin V.I., Matematicheskaya logika i teoriya algoritmov, Izdatelskii tsentr «Akademiya», M., 2010, 448 pp. | MR
[5] Mendelson E., Vvedenie v matematicheskuyu logiku, Nauka, M., 1976, 320 pp. | MR