Ki Fan inequality could be discovered much formerly
Matematičeskoe obrazovanie, no. 4 (2017), pp. 25-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Ki Fan inequality is derived by the method presented in a book by Hardy, Littlwood, and Polya dated 1934.
Keywords: Ki Fang inequality, generalized Ki Fang inequality.
@article{MO_2017_4_a4,
     author = {S. I. Kalinin},
     title = {Ki {Fan} inequality could be discovered much formerly},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {25--27},
     year = {2017},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2017_4_a4/}
}
TY  - JOUR
AU  - S. I. Kalinin
TI  - Ki Fan inequality could be discovered much formerly
JO  - Matematičeskoe obrazovanie
PY  - 2017
SP  - 25
EP  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MO_2017_4_a4/
LA  - ru
ID  - MO_2017_4_a4
ER  - 
%0 Journal Article
%A S. I. Kalinin
%T Ki Fan inequality could be discovered much formerly
%J Matematičeskoe obrazovanie
%D 2017
%P 25-27
%N 4
%U http://geodesic.mathdoc.fr/item/MO_2017_4_a4/
%G ru
%F MO_2017_4_a4
S. I. Kalinin. Ki Fan inequality could be discovered much formerly. Matematičeskoe obrazovanie, no. 4 (2017), pp. 25-27. http://geodesic.mathdoc.fr/item/MO_2017_4_a4/

[1] Beckenbach E.F., Bellman R., Inequalities, Springer, Berlin, 1961 | MR

[2] Bekkenbakh E., Bellman R., Neravenstva, Mir, M., 1965, 276 pp. | MR

[3] Alzer H., “On weighted arithmetic, geometric and harmonic mean values”, Glasnik matematicki, 25:45 (1990), 279–285 | MR

[4] Alzer H., Ando T., Nakamura Y., “The inequalities of W. Sierpinski and Ky Fan”, J. Math. Anal. Appl., 1990, no. 149, 497–512 | DOI | MR

[5] Hardy G.H., Littlwood J.E., Polya G., Inequalities, Oxford, 1934 | MR

[6] Khardi G.G., Littlvud D.E., Polia G., Neravenstva, GIIL, M., 1948, 456 pp.