Euler Circles of Intriangles and
Matematičeskoe obrazovanie, no. 3 (2016), pp. 38-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given a triangle, let us define the "intriangle" with the vertices at the tangent points of the incircle of the given triangle, and "extriangles" with the vertices at tangent points of the excircles of the given triangle. Euler circles of intriangles and extriangles are studied.
Keywords: inscribed circle excircle, Euler circle.
@article{MO_2016_3_a4,
     author = {E. D. Kulanin and N. Shihova},
     title = {Euler {Circles} of {Intriangles} and},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {38--48},
     year = {2016},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2016_3_a4/}
}
TY  - JOUR
AU  - E. D. Kulanin
AU  - N. Shihova
TI  - Euler Circles of Intriangles and
JO  - Matematičeskoe obrazovanie
PY  - 2016
SP  - 38
EP  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MO_2016_3_a4/
LA  - ru
ID  - MO_2016_3_a4
ER  - 
%0 Journal Article
%A E. D. Kulanin
%A N. Shihova
%T Euler Circles of Intriangles and
%J Matematičeskoe obrazovanie
%D 2016
%P 38-48
%N 3
%U http://geodesic.mathdoc.fr/item/MO_2016_3_a4/
%G ru
%F MO_2016_3_a4
E. D. Kulanin; N. Shihova. Euler Circles of Intriangles and. Matematičeskoe obrazovanie, no. 3 (2016), pp. 38-48. http://geodesic.mathdoc.fr/item/MO_2016_3_a4/

[1] Kulanin E.D., Shikhova N.A., “Pryamye Eilera i tochki Feierbakha”, Matematicheskoe obrazovanie, 2012., no. 2(62)

[2] Kulanin E.D., Shikhova N.A., Geometricheskii feierverk. Tvorcheskie zadaniya na urokakh matematiki, Ileksa, M., 2016