@article{MO_2015_4_a2,
author = {A. Yu. Evnin},
title = {Problems of math competition of the {South} {Ural} {State} {University}},
journal = {Matemati\v{c}eskoe obrazovanie},
pages = {26--52},
year = {2015},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MO_2015_4_a2/}
}
A. Yu. Evnin. Problems of math competition of the South Ural State University. Matematičeskoe obrazovanie, no. 4 (2015), pp. 26-52. http://geodesic.mathdoc.fr/item/MO_2015_4_a2/
[1] Aigner, M., G. Tsigler, Dokazatelstva iz Knigi. Luchshie dokazatelstva so vremën Evklida do nashikh dnei, Mir, M., 2006, 256 pp.
[2] A.V. Akopyan, A.A. Zaslavskii, Geometricheskie svoistva krivykh vtorogo poryadka, MTsNMO, M., 2011, 152 pp.
[3] Bashmakov, M., “O postulate Bertrana”, Kvant, 1990, no. 1, 59–62
[4] B. M. Veretennikov, L. P. Mokhracheva, A. B. Sobolev, G. L. Khodak, Studencheskie olimpiady UGTU-UPI po matematike, GOU VPO UGTU-UPI, Ekaterinburg, 2006, 233 pp.
[5] M.L. Krasnov, A.I. Kiselëv, G.I. Makarenko i dr., Vsya vysshaya matematika, uchebnik, v. 7, KomKniga, M., 2012, 208 pp.
[6] Demidovich, B.P., Sbornik zadach i uprazhnenii po matematicheskomu analizu, AST, M., 2009
[7] Yu.A. Ignatov, V.A. Shulyupov, A.Yu. Evnin, Zadachi studencheskikh matematicheskikh boëv, Izd-vo YuUrGU, Chelyabinsk, 2005, 43 pp.
[8] Kazanskie studencheskie olimpiady po matematike, Sbornik zadach, ed. I.S. Grigoreva, Kazanskii universitet, Kazan, 2011, 48 pp.
[9] Kurlyandchik, L., “Priblizhenie k ekstremumu”, Kvant, 1981, no. 1, 21–25
[10] I.N. Sergeev (red.), Olimpiada MGU «Lomonosov» po matematike (2005–2008), MTsNMO, M., 2009, 56 pp.
[11] Ponarin, Ya.P., Elementarnaya geometriya, v. 1, Planimetriya, MTsNMO, M., 2008, 312 pp.
[12] Ponarin, Ya.P., Elementarnaya geometriya, v. 2, Stereometriya, preobrazovaniya prostranstva, MTsNMO, M., 2006, 256 pp.
[13] Protasov, V., “Teorema Khelli i vokrug neë”, Kvant, 2009, no. 3, 8–14
[14] N.M. Sedrakyan, A.M. Avoyan, Neravenstva. Metody dokazatelstva, FIZMATLIT, M., 2002, 256 pp.
[15] Tolpygo, A.K., Tysyacha zadach Mezhdunarodnogo matematicheskogo Turnira gorodov, MTsNMO, M., 2009, 456 pp.
[16] Filippov, A.F., Sbornik zadach po differentsialnym uravneniyam, Nauka, M., 1979, 128 pp.
[17] Evnin, A.Yu., Sto pyatdesyat krasivykh zadach dlya buduschikh matematikov, KRASAND, M., 2014, 224 pp.
[18] Evnin, A.Yu., “150 krasivykh zadach dlya buduschikh matematikov”, Matematika v shkole, 2014, no. 9, 69–72
[19] Evnin, A.Yu., Vokrug teoremy Kholla, Knizhnyi dom «LIBROKOM», M., 2012, 88 pp.
[20] Evnin, A.Yu., Zadachnik po diskretnoi matematike, Knizhnyi dom «LIBROKOM», M., 2014, 264 pp.
[21] Evnin, A.Yu., Matematicheskii konkurs v YuUrGU, Izdatelskii tsentr YuUrGU, Chelyabinsk, 2012, 86 pp.
[22] Evnin, A.Yu., “Metod mass v geometrii treugolnika”, Matematika v shkole, 2014, no. 8, 53–61
[23] Evnin, A.Yu., “Metod mass v zadachakh”, Matematicheskoe obrazovanie, 2015, no. 1(73), 27–47
[24] Evnin, A.Yu., Praktikum po matematike, Vzglyad, Chelyabinsk, 2009, 256 pp.
[25] Evnin, A.Yu., Elementy teorii chisel, Izd-vo YuUrGU, Chelyabinsk, 2007, 54 pp.
[26] Evnin, A.Yu., “Vesovoi metod resheniya odnogo klassa zadach kombinatornoi geometrii”, Nauka YuUrGU, Materialy 62-i nauchnoi konferentsii. Sektsii estestvennykh nauk, Izdatelskii tsentr YuUrGU, Chelyabinsk, 2010, 82–85
[27] A.Yu. Evnin, “Dve zadachi i odna posledovatelnost”, Matematika v profilnoi shkole. Fraktal, 2013, no. 1, 106–113
[28] A.Yu. Evnin, “Otsenka chisla dominirovaniya v grafakh diametra 2”, Nauka YuUrGU, Materialy 66-i nauchnoi konferentsii. Sektsii estestvennykh nauk, Izdatelskii tsentr YuUrGU, Chelyabinsk, 2014, 225–228
[29] Evnin, A.Yu., “O chisle dominirovaniya v grafakh diametra 2”, Matematika v shkole, 2014, no. 10, 71–73 | MR
[30] Evnin, A.Yu., D.A. Shved, “Predstavimost funktsii v vide summy konechnogo chisla periodicheskikh funktsii”, Matematika v shkole, 2013, no. 5, 72–74
[31] Evnin, A.Yu., “Mnogochlen kak summa periodicheskikh funktsii”, Vestnik YuUrGU. Seriya «Matematika. Mekhanika. Fizika», 5:2 (2013), 178–179 | Zbl
[32] Evnin, A.Yu., “Primer vsyudu razryvnogo biektivnogo otobrazheniya $\mathbb R\to\mathbb R$, obratnoe k kotoromu nepreryvno v schëtnom mnozhestve tochek”, Vestnik YuUrGU. Seriya «Matematika. Mekhanika. Fizika», 4:10 (2011), 37–38
[33] Evnin, A.Yu., 150 elegantes problemas para futuros matematicos: Con soluciones detalladas, Per. s rus., KRASAND, M., 2015, 240 pp. (Spanish)
[34] Shved, D., An exercize in transfinite magic, http://danshved.wordpress.com/2013/04/30/an-exercise-in-transfinite-magic/