Elementary proof of Steinharz hypothesis
Matematičeskoe obrazovanie, no. 3 (2015), pp. 2-13
Cet article a éte moissonné depuis la source Math-Net.Ru
Let a triangle be divided in six smaller triangles by bisectors. The Steinharz hypothesis claims that the centers of the incircles of these six triangles belong to an ellipsis. The authors suggest an elementary proof.
Keywords:
subdivision of a triangle by its bysectors, centers of the incircles of the subdivision triangles, the common ellipsis of the centers.
@article{MO_2015_3_a0,
author = {O. R. Kayumov and K. E. Kashirina},
title = {Elementary proof of {Steinharz} hypothesis},
journal = {Matemati\v{c}eskoe obrazovanie},
pages = {2--13},
year = {2015},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MO_2015_3_a0/}
}
O. R. Kayumov; K. E. Kashirina. Elementary proof of Steinharz hypothesis. Matematičeskoe obrazovanie, no. 3 (2015), pp. 2-13. http://geodesic.mathdoc.fr/item/MO_2015_3_a0/
[1] L. A. Shteingarts, “Gipotezy o medianakh, vysotakh, bissektrisakh i ...ellipsakh”, Matematicheskoe obrazovanie, 2012, no. 2(62), 41–48
[2] L. A. Shteingarts, “Orbity Zhukova i teorema Morleya”, Matematika v shkole, 2012, no. 6, 53-61
[3] D. S. Grigorev, A. G. Myakishev, “I snova o gipotezakh Shteingartsa”, Matematicheskoe obrazovanie, 2013, no. 3(67), 40–56
[4] N. N. Osipov, “O mekhanicheskom dokazatelstve planimetricheskikh teorem ratsionalnogo tipa”, Programmirovanie, 40:2 (2014), 41–50
[5] V. I. Arnold, Gyuigens i Barrou, Nyuton i Guk, Nauka, M., 1989
[6] O. R. Kayumov, Proektivnye svoistva figur, Izd-vo OmGPU, Omsk, 2003