On Defining the Exponent and Deriving the Euler Formula as well as the Basic Limit Relations
Matematičeskoe obrazovanie, no. 1-2 (2013), pp. 67-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The exponent of an arbitrary complex number is defined and the Euler formula is derived. On this basis an easy-to-use definition of an arbitrary real power of a real number is given, and the basic limit relations are derived.
@article{MO_2013_1-2_a5,
     author = {S. V. Shvedenko},
     title = {On {Defining} the {Exponent} and {Deriving} the {Euler} {Formula} as well as the {Basic} {Limit} {Relations}},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {67--74},
     year = {2013},
     number = {1-2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2013_1-2_a5/}
}
TY  - JOUR
AU  - S. V. Shvedenko
TI  - On Defining the Exponent and Deriving the Euler Formula as well as the Basic Limit Relations
JO  - Matematičeskoe obrazovanie
PY  - 2013
SP  - 67
EP  - 74
IS  - 1-2
UR  - http://geodesic.mathdoc.fr/item/MO_2013_1-2_a5/
LA  - ru
ID  - MO_2013_1-2_a5
ER  - 
%0 Journal Article
%A S. V. Shvedenko
%T On Defining the Exponent and Deriving the Euler Formula as well as the Basic Limit Relations
%J Matematičeskoe obrazovanie
%D 2013
%P 67-74
%N 1-2
%U http://geodesic.mathdoc.fr/item/MO_2013_1-2_a5/
%G ru
%F MO_2013_1-2_a5
S. V. Shvedenko. On Defining the Exponent and Deriving the Euler Formula as well as the Basic Limit Relations. Matematičeskoe obrazovanie, no. 1-2 (2013), pp. 67-74. http://geodesic.mathdoc.fr/item/MO_2013_1-2_a5/