Unity of Logical and Graphical Culture is the Way of Solving Geometric Problems
Matematičeskoe obrazovanie, no. 1 (2012), pp. 30-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some useful rules of constructing planimetric and stereometric figures based on the corresponding reasoning are discussed, a lot of examples are considered.
@article{MO_2012_1_a5,
     author = {E. Potoskuev},
     title = {Unity of {Logical} and {Graphical} {Culture} is the {Way} of {Solving} {Geometric} {Problems}},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {30--40},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2012_1_a5/}
}
TY  - JOUR
AU  - E. Potoskuev
TI  - Unity of Logical and Graphical Culture is the Way of Solving Geometric Problems
JO  - Matematičeskoe obrazovanie
PY  - 2012
SP  - 30
EP  - 40
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MO_2012_1_a5/
LA  - ru
ID  - MO_2012_1_a5
ER  - 
%0 Journal Article
%A E. Potoskuev
%T Unity of Logical and Graphical Culture is the Way of Solving Geometric Problems
%J Matematičeskoe obrazovanie
%D 2012
%P 30-40
%N 1
%U http://geodesic.mathdoc.fr/item/MO_2012_1_a5/
%G ru
%F MO_2012_1_a5
E. Potoskuev. Unity of Logical and Graphical Culture is the Way of Solving Geometric Problems. Matematičeskoe obrazovanie, no. 1 (2012), pp. 30-40. http://geodesic.mathdoc.fr/item/MO_2012_1_a5/