Around Hall Theorem (finished)
Matematičeskoe obrazovanie, no. 4 (2005), pp. 2-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Hall theorem and related matters are considered. The connections to the duality principle of linear programming are shown. For students studying applied and discrete mathematics as well as informatics.
@article{MO_2005_4_a0,
     author = {A. Yu. Evnin},
     title = {Around {Hall} {Theorem} (finished)},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {2--16},
     year = {2005},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2005_4_a0/}
}
TY  - JOUR
AU  - A. Yu. Evnin
TI  - Around Hall Theorem (finished)
JO  - Matematičeskoe obrazovanie
PY  - 2005
SP  - 2
EP  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MO_2005_4_a0/
LA  - ru
ID  - MO_2005_4_a0
ER  - 
%0 Journal Article
%A A. Yu. Evnin
%T Around Hall Theorem (finished)
%J Matematičeskoe obrazovanie
%D 2005
%P 2-16
%N 4
%U http://geodesic.mathdoc.fr/item/MO_2005_4_a0/
%G ru
%F MO_2005_4_a0
A. Yu. Evnin. Around Hall Theorem (finished). Matematičeskoe obrazovanie, no. 4 (2005), pp. 2-16. http://geodesic.mathdoc.fr/item/MO_2005_4_a0/