On the Maximal Length of Two Sequences of Integers in Arithmetic Progressions with the Same Prime Divisors.
Monatshefte für Mathematik, Tome 121 (1996) no. 3, pp. 295-308.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : maximal length of sequences, linear forms in logarithms, -conjecture, prime divisors, arithmetic progressions, greatest squarefree divisor
@article{MOMA_1996__121_3_178727,
     author = {R. Balasubramanian and T.N. Shorey and M. Langevin and M. Waldschmidt},
     title = {On the {Maximal} {Length} of {Two} {Sequences} of {Integers} in {Arithmetic} {Progressions} with the {Same} {Prime} {Divisors.}},
     journal = {Monatshefte f\"ur Mathematik},
     pages = {295--308},
     publisher = {mathdoc},
     volume = {121},
     number = {3},
     year = {1996},
     zbl = {0859.11012},
     url = {http://geodesic.mathdoc.fr/item/MOMA_1996__121_3_178727/}
}
TY  - JOUR
AU  - R. Balasubramanian
AU  - T.N. Shorey
AU  - M. Langevin
AU  - M. Waldschmidt
TI  - On the Maximal Length of Two Sequences of Integers in Arithmetic Progressions with the Same Prime Divisors.
JO  - Monatshefte für Mathematik
PY  - 1996
SP  - 295
EP  - 308
VL  - 121
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MOMA_1996__121_3_178727/
ID  - MOMA_1996__121_3_178727
ER  - 
%0 Journal Article
%A R. Balasubramanian
%A T.N. Shorey
%A M. Langevin
%A M. Waldschmidt
%T On the Maximal Length of Two Sequences of Integers in Arithmetic Progressions with the Same Prime Divisors.
%J Monatshefte für Mathematik
%D 1996
%P 295-308
%V 121
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MOMA_1996__121_3_178727/
%F MOMA_1996__121_3_178727
R. Balasubramanian; T.N. Shorey; M. Langevin; M. Waldschmidt. On the Maximal Length of Two Sequences of Integers in Arithmetic Progressions with the Same Prime Divisors.. Monatshefte für Mathematik, Tome 121 (1996) no. 3, pp. 295-308. http://geodesic.mathdoc.fr/item/MOMA_1996__121_3_178727/