On the Maximal Length of Two Sequences of Integers in Arithmetic Progressions with the Same Prime Divisors.
Monatshefte für Mathematik, Tome 121 (1996) no. 3, pp. 295-308
Voir la notice de l'article provenant de la source European Digital Mathematics Library
Mots-clés :
maximal length of sequences, linear forms in logarithms, -conjecture, prime divisors, arithmetic progressions, greatest squarefree divisor
@article{MOMA_1996__121_3_178727,
author = {R. Balasubramanian and T.N. Shorey and M. Langevin and M. Waldschmidt},
title = {On the {Maximal} {Length} of {Two} {Sequences} of {Integers} in {Arithmetic} {Progressions} with the {Same} {Prime} {Divisors.}},
journal = {Monatshefte f\"ur Mathematik},
pages = {295--308},
publisher = {mathdoc},
volume = {121},
number = {3},
year = {1996},
zbl = {0859.11012},
url = {http://geodesic.mathdoc.fr/item/MOMA_1996__121_3_178727/}
}
TY - JOUR AU - R. Balasubramanian AU - T.N. Shorey AU - M. Langevin AU - M. Waldschmidt TI - On the Maximal Length of Two Sequences of Integers in Arithmetic Progressions with the Same Prime Divisors. JO - Monatshefte für Mathematik PY - 1996 SP - 295 EP - 308 VL - 121 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MOMA_1996__121_3_178727/ ID - MOMA_1996__121_3_178727 ER -
%0 Journal Article %A R. Balasubramanian %A T.N. Shorey %A M. Langevin %A M. Waldschmidt %T On the Maximal Length of Two Sequences of Integers in Arithmetic Progressions with the Same Prime Divisors. %J Monatshefte für Mathematik %D 1996 %P 295-308 %V 121 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MOMA_1996__121_3_178727/ %F MOMA_1996__121_3_178727
R. Balasubramanian; T.N. Shorey; M. Langevin; M. Waldschmidt. On the Maximal Length of Two Sequences of Integers in Arithmetic Progressions with the Same Prime Divisors.. Monatshefte für Mathematik, Tome 121 (1996) no. 3, pp. 295-308. http://geodesic.mathdoc.fr/item/MOMA_1996__121_3_178727/