Numerical simulation of pressure fluctuations on a plate behind a transverse recess in a supersonic flow
Matematičeskoe modelirovanie, Tome 36 (2024) no. 4, pp. 103-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

The flow around a flat transverse recess on a flat plate by a supersonic viscous gas flow is numerically simulated. The flow inside recess and the pressure fluctuations in the it near wake are investigated at the Mach numbers of the incoming flow from 2 to 8 and the laminar boundary layer. The calculations use high-order difference schemes.
Keywords: numerical modeling, supersonic unsteady viscous gas flows, Navier-Stokes equations, high-order composite compact schemes.
@article{MM_2024_36_4_a6,
     author = {A. D. Savel'ev and I. A. Savel'ev},
     title = {Numerical simulation of pressure fluctuations on a plate behind a transverse recess in a supersonic flow},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {103--115},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_4_a6/}
}
TY  - JOUR
AU  - A. D. Savel'ev
AU  - I. A. Savel'ev
TI  - Numerical simulation of pressure fluctuations on a plate behind a transverse recess in a supersonic flow
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 103
EP  - 115
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_4_a6/
LA  - ru
ID  - MM_2024_36_4_a6
ER  - 
%0 Journal Article
%A A. D. Savel'ev
%A I. A. Savel'ev
%T Numerical simulation of pressure fluctuations on a plate behind a transverse recess in a supersonic flow
%J Matematičeskoe modelirovanie
%D 2024
%P 103-115
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_4_a6/
%G ru
%F MM_2024_36_4_a6
A. D. Savel'ev; I. A. Savel'ev. Numerical simulation of pressure fluctuations on a plate behind a transverse recess in a supersonic flow. Matematičeskoe modelirovanie, Tome 36 (2024) no. 4, pp. 103-115. http://geodesic.mathdoc.fr/item/MM_2024_36_4_a6/

[1] K. F. Stetson, R. L. Kimmel, On hypersonic boundary layer stability, AIAA Paper No 92-0737, 1992, 57 pp. | Zbl

[2] A. A. Maslov, A. A. Sidorenko, A. N. Shiplyuk, “An experimental investigation of natural disturbances in a hypersonic boundary layer on a flat plate”, Journal of Applied Mechanics and Technical Physics, 38:1 (1997), 64–68 | DOI

[3] D. Arnal, A. A. Maslov, A. A. Sidorenko, A. N. Shiplyuk, “Experimental studies of the susceptibility of a hypersonic boundary layer to acoustic disturbances”, Izv. RAS, MZhG, 1999, no. 5, 89–95

[4] A. A. Maslov, A. A. Sidorenko, A. N. Shiplyuk, D. Arnal, “Leading edge receptivity of hypersonic boundary layer on a flat plate”, J Fluid Mech., 426 (2001), 73–94 | DOI | Zbl

[5] A. V. Boyko, A. V. Dovgal, V. V. Kozlov, V. A. Shcherbakov, “Instability and susceptibility of the boundary layer in the vicinity of two-dimensional surface inhomogeneities”, Proc. of the Siberian Branch of the USSR Acad.of Sci. Series of Technical Sci., 1 (1990), 50–55

[6] I. V. Egorov, V. G. Sudakov, A. V. Fedorov, “Numerical modeling of the receptivity of a supersonic boundary layer to acoustic disturbances”, Fluid Dynamics, 41:1 (2006), 37–48 | DOI | Zbl

[7] I. V. Egorov, A. V. Novikov, “Direct numerical simulation of laminar-turbulent flow over a flat plate at hypersonic flow speeds”, Comput. Math. Math. Phys., 56:6 (2016), 1048–1064 | DOI | DOI | MR | Zbl

[8] I. V. Egorov, A. V. Novikov, A. V. Fedorov, “Direct numerical simulation of the laminar-turbulent transition at hypersonic flow speeds on a supercomputer”, Comput. Math. Math. Phys., 57:8 (2017), 1335–1359 | DOI

[9] E. V. Shilnikov, M. A. Shumkov, “Raschet obtekaniya kaverny sverhzvukovym potokom vyazkogo szhimaemogo gaza”, Matem. model., 11:10 (1999), 17–30

[10] D. P. Rizzetta, “Numerical simulation of supersonic flow over a three-dimensional cavity”, AIAA J., 26:7 (1988), 799–807 | DOI

[11] A. S. Shishaeva, M. M. Simonenko, S. V. Guvernyuk, A. A. Aksenov, “Numerical simulation of control by a heat pulse under aerodynamic hysteresis in supersonic flow over an axisymmetric body with annular cavity”, Physical-chemical kinetics in gas dynamics, 20:3 (2019), 13 pp. http://chemphys.edu.ru/issues/2019-20-3/articles/834/

[12] A. D. Savel'ev, “Multioperator representation of composite compact schemes”, Comput. Math. Math. Phys., 54:10 (2014), 1522–1535 | DOI | MR | Zbl

[13] L. G. Loitsyanskii, Mechanics of Liquids and Geses, Begell House, 1995, 971 pp. | MR

[14] J. L. Steger, “Implicit finite-difference simulation of flow about arbitrary two-dimensional geometries”, AIAA Journal, 16 (1978), 676–685 | DOI

[15] M. N. Mikhailovskaya, B. V. Rogov, “Monotone compact running schemes for systems of hyperbolic equations”, Comp. Math. Math. Phys., 52:4 (2012), 578–600 | DOI | MR | Zbl

[16] A. D. Savel'ev, “Numerical simulation of a hypersonic flow over an aircraft in a high-altitude active movement area”, MM CS, 10:2 (2018), 218–225

[17] I. A. Savel'ev, A. D. Savel'ev, “O kolebaniyah davleniya za poperechnoj vyemkoj v sverhzvukovom potoke”, Mater. XIII Mezhd. konf. po prikl. matem. i mekhanike v aerokosmicheskoj otrasli, AMMAI'2020 (6-13 sent. 2020, Alushta), MAI, 2020, 567–569