Analytical and numerical study of the problem of plankton population dynamics in the presence of microplastics
Matematičeskoe modelirovanie, Tome 36 (2024) no. 3, pp. 95-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the study and numerical implementation of a mathematical model of the dynamics of plankton populations in the presence of microplastic particles. The article presents the formulation of the initial-boundary value problem of the dynamics of plankton populations and microplastics, and also describes the approach to linearization of the continuous model under consideration. The results of a study of the proximity of solutions to the linearized and original initial-boundary value problems by the energy method are presented. The approximation of a continuous model of the dynamics of plankton populations with the second order of accuracy relative to the steps of the spatial grid with boundary conditions of the second and third kind is carried out. To numerically solve the problem, a software package has been developed for modeling problems of biological kinetics, geochemical cycles and microplastic transformation. A numerical experiment was carried out based on the developed software package.
Keywords: models of plankton population dynamics, microplastics, linearization of the model, numerical methods.
@article{MM_2024_36_3_a6,
     author = {A. I. Sukhinov and A. E. Chistyakov and Yu. V. Belova and I. Yu. Kuznetsova},
     title = {Analytical and numerical study of the problem of plankton population dynamics in the presence of microplastics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {95--114},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_3_a6/}
}
TY  - JOUR
AU  - A. I. Sukhinov
AU  - A. E. Chistyakov
AU  - Yu. V. Belova
AU  - I. Yu. Kuznetsova
TI  - Analytical and numerical study of the problem of plankton population dynamics in the presence of microplastics
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 95
EP  - 114
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_3_a6/
LA  - ru
ID  - MM_2024_36_3_a6
ER  - 
%0 Journal Article
%A A. I. Sukhinov
%A A. E. Chistyakov
%A Yu. V. Belova
%A I. Yu. Kuznetsova
%T Analytical and numerical study of the problem of plankton population dynamics in the presence of microplastics
%J Matematičeskoe modelirovanie
%D 2024
%P 95-114
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_3_a6/
%G ru
%F MM_2024_36_3_a6
A. I. Sukhinov; A. E. Chistyakov; Yu. V. Belova; I. Yu. Kuznetsova. Analytical and numerical study of the problem of plankton population dynamics in the presence of microplastics. Matematičeskoe modelirovanie, Tome 36 (2024) no. 3, pp. 95-114. http://geodesic.mathdoc.fr/item/MM_2024_36_3_a6/

[1] A. Sukhinov, A. Chistyakov, I. Kuznetsova; Y. Belova; E. Rahimbaeva, “Solving Hydrodynamic Problems Based on a Modified Upwind Leapfrog Scheme in Areas with Complex Geometry”, Mathematics, 10 (2022), 3248 | DOI

[2] M. Asghari, A. M. Fathollahi-Fard, S. M.J. M. Al-e-hashem, M. A. Dulebenets, “Transforma-tion and Linearization Techniques in Optimization: A State-of-the-Art Survey”, Mathematics, 10:2 (2022), 283 | DOI

[3] B. N. Chetverushkin, “Kinetic models for solving continuum mechanics problems on supercomputers”, Math. Models Comput. Simul, 7:6 (2015), 531–539 | DOI | MR | Zbl

[4] A. Berezina, E. Yakushev, O. Savchuk, C. Vogelsang, A. Staalstrom, “Modelling the Influence from Biota and Organic Matter on the Transport Dynamics of Microplastics in the Water Column and Bottom Sediments in the Oslo Fjord”, Water, 13 (2021), 2690 | DOI

[5] A. Sukhinov, Y. Belova, A. Chistyakov, A. Beskopylny, B. Meskhi, “Mathematical Modeling of the Phytoplankton Populations Geographic Dynamics for Possible Scenarios of Changes in the Azov Sea Hydrological Regime”, Mathematics, 9:23 (2021), 3025 | DOI

[6] L. Michaelis, M. L. Menten, “Die Kinetik der Invertinwirkung”, Biochemische Zeitschrift, 49 (1913), 333–369

[7] A. A. Samarskii, P. N. Vabishchevich, “Finite-Difference Approximations to the Transport Equation. II”, Differential Equations, 36:7 (2000), 1069–1077 | DOI | MR | Zbl

[8] A. A. Samarskii, P. N. Vabishchevich, Chislennyye metody resheniia zadach konvektsii-diffuzii, URSS, M., 2009, 248 pp.

[9] A. I. Sukhinov, A. E. Chistyakov, I. Yu. Kuznetsova, A. M. Atayan, A. V. Nikitina, “Regularized Difference Scheme for Solving Hydrodynamic Problems”, Math. Models Comput. Simul, 14:5 (2022), 745–754 | DOI | DOI | MR | Zbl

[10] B. N. Chetverushkin, M. V. Yakobovskiy, M. A. Kornilina, A. V. Semenova, “Numerical algorithms for HPC systems and fault tolerance”, Comm. in Comput. Infor.Sci, 1063 (2019), 34–44

[11] A. I. Sukhinov, E. A. Protsenko, A. E. Chistyakov, S. A. Shreter, “Cravnenie vychislitelnykh ef-fektivnostei iavnoi i neiavnoi skhem dlia zadachi transporta nanosov v pribrezhnykh vodnykh sistemakh”, Vychislitelnye metody i programmirovanie, 16:3 (2015), 328–338