Numerical simulation of 3D flow past an inlet model
Matematičeskoe modelirovanie, Tome 36 (2024) no. 3, pp. 51-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical simulation of supersonic flow of viscous heat-conducting gas past an inlet model for various Mach numbers ($M = 4$ and $5$) and temperatures of the model surface was carried out on the basis of an unsteady Reynolds averaged Navier–Stokes equations system (URANS) with the Spalart–Allmaras (SA) and Menter’s (SST) turbulence model. Three-dimensional features of the flow and heat flux’s dependence on wall temperature were investigated. Comparison of simulation results with experimental data was carried out.
Keywords: engine inlet, SST, isothermal wall, heat flux density.
Mots-clés : RANS, SA
@article{MM_2024_36_3_a3,
     author = {B. N. Chetverushkin and V. E. Borisov and A. E. Lutsky and Ya. V. Khankhasaeva},
     title = {Numerical simulation of {3D} flow past an inlet model},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {51--66},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_3_a3/}
}
TY  - JOUR
AU  - B. N. Chetverushkin
AU  - V. E. Borisov
AU  - A. E. Lutsky
AU  - Ya. V. Khankhasaeva
TI  - Numerical simulation of 3D flow past an inlet model
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 51
EP  - 66
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_3_a3/
LA  - ru
ID  - MM_2024_36_3_a3
ER  - 
%0 Journal Article
%A B. N. Chetverushkin
%A V. E. Borisov
%A A. E. Lutsky
%A Ya. V. Khankhasaeva
%T Numerical simulation of 3D flow past an inlet model
%J Matematičeskoe modelirovanie
%D 2024
%P 51-66
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_3_a3/
%G ru
%F MM_2024_36_3_a3
B. N. Chetverushkin; V. E. Borisov; A. E. Lutsky; Ya. V. Khankhasaeva. Numerical simulation of 3D flow past an inlet model. Matematičeskoe modelirovanie, Tome 36 (2024) no. 3, pp. 51-66. http://geodesic.mathdoc.fr/item/MM_2024_36_3_a3/

[1] B. A. Zemlyanskii, V. V. Lunev, V. I. Vlasov, A. B. Gorshkov, G. N. Zalogin, R. V. Kovalev, V. P. Marinin, I. N. Murzinov, Konvektivnyi teploobmen letatelnykh apparatov, Fizmatlit, M., 2014

[2] S. T. Surzhikov, Radiatsionnaia gazovaia dinamika spuskaemykh kosmicheskikh apparatov. Mnogotemperaturnye modeli, IPMekh RAN, M., 2013

[3] E. H. Hirschel, C. Weiland, Selected Aerothermodynamic Design Problems of Hypersonic Flight Vehicles, Springer-Verlag, Berlin–Heidelberg, 2009 | Zbl

[4] A. C. Idris, M. R. Saad, H. Zare-Behtash, E. Erdem, K. Kontis, “Performance analysis of a scramjet inlet-isolator using experimental and numerical methods”, 28th Congress of the International Council of the Aeronautical Sciences 2012, ICAS 2012, v. 4, 2907–2915

[5] V. I. Zvegintsev, “Gas-dynamic problems in off-design operation of supersonic inlets (review)”, Thermophys. Aeromech, 24:6 (2017), 807–834 | DOI

[6] E. T. Curran, “Scramjet engines: the first forty years”, J. of Propulsion and Power, 17:6 (2001), 1138–1148 | DOI

[7] J. Chang, N. Li, K. Xu, W. Bao, D. Yu, “Recent research progress on unstart mechanism, detection and control of hypersonic inlet”, Progress in Aerospace Sci, 89 (2017), 1–22 | DOI

[8] Y. P. Gounko, I. I. Mazhul, “Experimental characteristics of a supersonic three-dimensional air inlet with adjustable throat”, Thermophys. Aeromech., 20 (2013), 49–64 | DOI | MR

[9] S. R. Allmaras, F. T. Johnson, P. R. Spalart, “Modifications and Clarifications for the Implementation of the Spalart-Allmaras Turbulence Model”, Seventh International Conference on CFD (ICCFD7) (Big Island, Hawaii, 9-13 July 2012)

[10] F. R. Menter, M. Kuntz, R. Langtry, “Ten Years of Industrial Experience with the SST Turbulence Model”, Turbulence, Heat and Mass Transfer 4, eds. K. Hanjalic, Y. Nagano and M. Tummers, Begell House, Inc, 2003, 625–632

[11] V. E. Borisov, A. A. Davydov, I. Yu. Kudryashov, A. E. Lutskii, Programmnyi kompleks ARES dlya rascheta trekhmernykh turbulentnykh techenii vyazkogo szhimaemogo gaza na vyso-koproizvoditel'nykh vychislitel'nykh sistemekh, Svidetel'stvo o registratsii programmy dlya EVM RU 2019667338, 23.12.2019

[12] B. N. Chetverushkin, V. E. Borisov, A. A. Davydov, A. E. Lutsky, Ya. V. Khankhasaeva, “Numerical Simulation of a Heat Flux Around a Ballistic Model Using a Hyperbolic Quasi-Gas Dynamic System of Equations”, Math. Models Comp. Simulations, 13:5 (2021), 844–852 | DOI | DOI | MR