Experimental verification of the method and code for calculating low-frequency fluctuations at the jet boundary of a full-scale subsonic looped type wind tunnel
Matematičeskoe modelirovanie, Tome 35 (2023) no. 9, pp. 77-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of computational and experimental sets, where low-frequency pulsations of total pressure in the jet obtained by various methods were studied and compared, are presented. The calculation was performed by the LES (IDDES) method using the EWT-TSAGI code. The experiment was performed using pressure gauges, sensors IKD-100 and Kulite. Visualization of the flow was performed. It is shown that the calculated and experimental data are in acceptable agreement with each other in all areas, except for the outer boundary of the jet, where the calculation grid has insufficient condensation.
Keywords: real scale wind tunnel, large eddy numerical method, ring vortex, jet border
Mots-clés : turbulence, total pressure fluctuations.
@article{MM_2023_35_9_a5,
     author = {S. M. Bosnyakov and D. V. Liverko and V. V. Malenko and S. V. Mikhaylov and A. N. Morozov},
     title = {Experimental verification of the method and code for calculating low-frequency fluctuations at the jet boundary of a full-scale subsonic looped type wind tunnel},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {77--95},
     publisher = {mathdoc},
     volume = {35},
     number = {9},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_9_a5/}
}
TY  - JOUR
AU  - S. M. Bosnyakov
AU  - D. V. Liverko
AU  - V. V. Malenko
AU  - S. V. Mikhaylov
AU  - A. N. Morozov
TI  - Experimental verification of the method and code for calculating low-frequency fluctuations at the jet boundary of a full-scale subsonic looped type wind tunnel
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 77
EP  - 95
VL  - 35
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_9_a5/
LA  - ru
ID  - MM_2023_35_9_a5
ER  - 
%0 Journal Article
%A S. M. Bosnyakov
%A D. V. Liverko
%A V. V. Malenko
%A S. V. Mikhaylov
%A A. N. Morozov
%T Experimental verification of the method and code for calculating low-frequency fluctuations at the jet boundary of a full-scale subsonic looped type wind tunnel
%J Matematičeskoe modelirovanie
%D 2023
%P 77-95
%V 35
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_9_a5/
%G ru
%F MM_2023_35_9_a5
S. M. Bosnyakov; D. V. Liverko; V. V. Malenko; S. V. Mikhaylov; A. N. Morozov. Experimental verification of the method and code for calculating low-frequency fluctuations at the jet boundary of a full-scale subsonic looped type wind tunnel. Matematičeskoe modelirovanie, Tome 35 (2023) no. 9, pp. 77-95. http://geodesic.mathdoc.fr/item/MM_2023_35_9_a5/

[1] G. S. Biushgens, E. L. Bedrzhitskii, V. G. Dmitriev, Tsentr aviatsionnoi nauki, Tsentralnyi aerogidrodinamicheskii institut im. prof. N.E. Zhukovskogo, M., 2004, 392 pp.

[2] S. P. Strelkov, G. A. Bendrikov, N. A. Smirnov, Pulsatsii v aerodinamicheskikh trubakh i sposoby dempfirovaniia ikh, Trudy TsAGI, 593, «Biuro novoi tekhniki», 1946, 57 pp.

[3] E. Jacobs, NACA reports, No 322, 1929

[4] G. N. Abramovich, Prikladnaia gazovaia dinamika, Nauka, M., 1969

[5] A. S. Ginevskii, E. V. Vlasov, R. K. Karavosov, Akusticheskoe upravlenie turbulentnymi struiami, Fizmatlit, M., 2001, 240 pp.

[6] E. V. Vlasov, A. S. Ginevskii, R. K. Karavosov, “Vliianie nachalnykh uslovii istecheniia na aerodinamicheskie i akusticheskie kharakteristiki turbulentnykh strui”, Mekhanika neodnorodnykh i turbulentnykh potokov, Nauka, M., 1989, 26–34

[7] L. J.S. Bradbury, A. H. Khadem, “The distortion of a jet by tabs”, J. Fluid Mech., 70:4 (1975), 801–813 | DOI

[8] E. K. Guseva, A. V. Garbaruk, M. K. Strelets, “Application of DDES and IDDES with shear layer adapted subgrid length-scale to separated flows”, J. Phys. Conf. Ser, 769 (2016), 012081 | DOI

[9] S. V. Mikhailov, Programma, realizuiushchaia zonnyi podkhod, dlia rascheta nestatsionarnogo obtekaniia viazkim potokom turbulentnogo gaza slozhnykh aerodinamicheskikh form, vkliuchaia krylo s mekhanizatsiei (ZEUS), Svidetelstvo ob ofitsialnoi registratsii programmy dlia EVM No 2013610172 ot 12 noiabria 2012, Reestr programm dlia EVM

[10] Izmeritelnye kompleksy davleniia IKD6TDa i IKD6TDf

[11] Datchik dinamicheskogo davleniia Kulite XT

[12] P. Spalart, S. Allmaras, “One-equation turbulence model for aerodynamic flows”, La Recherche Aerospatiale, 1994, 5–21

[13] S. R. Allmaras, F. T. Johnson, P. R. Spalart, “Modifications and clarifications for the implementation of the Spalart-Allmaras turbulence model”, Seventh International Conference on Computational Fluid Dynamics (Big Island, 2012), 1–11 | MR

[14] P. Spalart et al., “Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach”, Proceedings of first AFOSR international conference on DNS/LES (Ruston, Louisiana, USA, 1997), 137–147

[15] P. Spalart et al., “A new version of detached-eddy simulation, resistant to ambiguous grid densities”, Theoretical and Computational Fluid Dynamics, 20:3 (2006), 181–195 | DOI | Zbl

[16] M. L. Shur et al., “A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities”, Internat. Journal of Heat and Fluid Flow, 29:6 (2008), 1638–1649 | DOI

[17] M. L. Shur et al., “An Enhanced Version of DES with Rapid Transition from RANS to LES in Separated Flows”, Flow, Turbulence and Combustion, 95:4 (2015), 709–737 | DOI

[18] A. Travin et al., “Physical and Numerical Upgrades in the Detached-Eddy Simulation of Complex Turbulent Flows”, Advances in LES of Complex Flows, 2002, 239–254 | DOI | Zbl

[19] E. Guseva, A. Garbaruk, M. Strelets, “An automatic hybrid numerical scheme for global RANS-LES approaches”, IOP Conf. Series: Journal of Physics, 929, 2017, 012099 | DOI

[20] S. Mikhailov, “Obieektno-orientirovannyi podkhod k sozdaniiu effektivnykh programm, realizuiushchikh parallelnye algoritmy rascheta”, Trudy TsAGI, 2671, 2007, 86–108

[21] V. Vlasenko, “O matematicheskom podkhode i printsipakh postroeniia chislennykh metodologii dlia Paketa Prikladnykh Programm EWT-TsAGI”, Trudy TsAGI, 2671 (2007), 20–85

[22] D. S. Balsara, C. W. Shu, “Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy”, Journal of Computational Physics, 160 (2000), 405–452 | DOI | MR | Zbl

[23] G.-S. Jiang, C. W. Shu, “Efficient Implementation of Weighted ENO Schemes”, Journal of Computational Physics, 126 (1996), 202–228 | DOI | MR | Zbl

[24] A. Suresh, H. Huynh, “Accurate Monotonicity-Preserving Schemes with Runge-Kutta Time Stepping”, Journal of Computational Physics, 136:1 (1997), 83–99 | DOI | MR | Zbl

[25] W. F. Huang, Y. X. Ren, X. Jiang, “A simple algorithm to improve the performance of the WENO scheme on non-uniform grids”, Acta Mechanica Sinica/Lixue Xuebao, 34:1 (2018), 37–47 | DOI | MR | Zbl

[26] S. Godunov, “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matematicheskii sbornik, 47(89):3 (1959), 271–306 | Zbl

[27] Informatsionno-izmeritelnyi i upravliaiushchii kompleks IVK M2 «Potok»

[28] Perenosnoi registrator-analizator dinamicheskikh parametrov MIC

[29] Datchik raznosti davleniia Metran-150 CD firmy Emerson

[30] Avery Lee, VirtualDub 1.10.4, svobodnoe krossplatformennoe prilozhenie, 2013

[31] A. N. Morozov, Programma Leonardo2D, svid. o registr. No 2011610508, Rospatent, 2011

[32] S. M. Bosniakov, I. S. Matiash, S. V. Mikhailov, “Numerical Simulation of Low Frequency Pulsations in the Mixing Layer of a Jet of a Full-Scale Wind Tunnel and Experiment of Modeling a Jet Actuator for Their Suppression”, MM CS, 14:1 (2022), 120–128 | DOI | MR | Zbl

[33] S. M. Bosniakov, V. V. Malenko, A. N. Morozov, M. A. Nikolaev, D. V. Liverko, “Eksperimentalnoe issledovanie nizkochastotnykh pulsatsii v sloe smesheniia strui naturnoi aerodinamicheskoi truby pri nalichii i otsutstvii vikhregeneratorov”, Uchenye zapiski TsAGI, 52:3 (2021), 46–57