Numerical simulation of inverse retrospective problems for a nonlinear heat equation
Matematičeskoe modelirovanie, Tome 35 (2023) no. 6, pp. 109-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proposes a method for numerically solving the inverse problem of restoring the initial condition for a nonlinear one-dimensional heat equation. The proposed method is based on the use of the parametric identification method, the implicit gradient descent method of minimizing the residual functional and the regularization method of A.N. Tikhonov. Also we developed algorithm and a software package for numerical solution. Numerous results of numerical experiments are obtained and discussed. The analysis of the behavior of decision functions w/w the use of the regularizing functional A.N. Tikhonov and the effects of the regularizing parameter is carried out. An algorithm for finding the optimal value of the regularizing parameter based on a grid search with cross-validation (K-fold) is proposed. The results of numeric experiments using the proposed numerical method showed that the error of the results obtained does not exceed the error in the experimental data.
Keywords: inverse problems of heat transfer, retrospective problems, heat conduction, numerical methods, parametric identification method, regularization.
@article{MM_2023_35_6_a7,
     author = {S. A. Kolesnik and E. M. Stifeev},
     title = {Numerical simulation of inverse retrospective problems for a nonlinear heat equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {109--122},
     publisher = {mathdoc},
     volume = {35},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_6_a7/}
}
TY  - JOUR
AU  - S. A. Kolesnik
AU  - E. M. Stifeev
TI  - Numerical simulation of inverse retrospective problems for a nonlinear heat equation
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 109
EP  - 122
VL  - 35
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_6_a7/
LA  - ru
ID  - MM_2023_35_6_a7
ER  - 
%0 Journal Article
%A S. A. Kolesnik
%A E. M. Stifeev
%T Numerical simulation of inverse retrospective problems for a nonlinear heat equation
%J Matematičeskoe modelirovanie
%D 2023
%P 109-122
%V 35
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_6_a7/
%G ru
%F MM_2023_35_6_a7
S. A. Kolesnik; E. M. Stifeev. Numerical simulation of inverse retrospective problems for a nonlinear heat equation. Matematičeskoe modelirovanie, Tome 35 (2023) no. 6, pp. 109-122. http://geodesic.mathdoc.fr/item/MM_2023_35_6_a7/

[1] S. A. Kolesnik, V. F. Formalev, I. A. Selin, “Matematicheskaya model i programmnyj kompleks sopryazhennogo teploobmena mezhdu vyazkimi gazodinamicheskimi techeniyami i ohlazhdaemymi lopatkami gazovyh turbin”, Trudy MAI, 2015, no. 80, 12

[2] V. F. Formalev, S. A. Kolesnik, A. A. Chipashvili, “An analytical investigation of heat and mass transfer under conditions of film cooling of bodies”, High Temperature, 44:1 (2006), 108–114

[3] V. F. Formalev, S. A. Kolesnik, “Analiticheskoe issledovanie teplovogo sostoyaniya anizotropnoj plastiny pri nalichii teploobmena na svobodnyh granicah”, Matematicheskoe modelirovanie, 15:6 (2003), 107 | Zbl

[4] V. F. Formalev, S. A. Kolesnik, Matematicheskoe modelirovanie aerogazodinamicheskogo nagreva zatuplennyh anizotropnyh tel, Izd-vo MAI, M., 2016, 160 pp.

[5] V. F. Formalev, S. A. Kolesnik, Matematicheskoe modelirovanie sopryazhyonnogo teploperenosa mezhdu vyazkimi gazodinamicheskimi techeniyami i anizotropnymi telami, LENAND, M., 2019, 320 pp.

[6] V. F. Formalev, S. A. Kolesnik, I. A. Selin, “O sopryazhennom teploobmene pri aerodinamicheskom nagreve anizotropnyh tel s vysokoj stepen'yu anizotropii”, Teplovye processy v tekhnike, 8:9 (2016), 388–394 | MR

[7] S. A. Kolesnik, “Identifikatsiya komponentov tenzora teploprovodnosti anizotropnyh kompozitsionnyh materialov”, Mekhanika kompozits. mater. i konstr., 18:1 (2012), 111–120

[8] S. A. Kolesnik, “A method for the identification of nonlinear components of the thermal conductivity tensor for anisotropic materials”, MM, 6:5 (2014), 480–489 | MR | MR | Zbl

[9] A. N. Tihonov, V. Ya. Arsenin, Metody resheniya nekorrektnyh zadach, Nauka, M., 1979, 288 pp.

[10] O. M. Alifanov, E. A. Artyuhin, S. V. Rumyancev, Ekstremal'nye metody resheniya nekorrektnyh zadach, Nauka, M., 1988

[11] O. M. Alifanov, Obratnye zadachi teploobmena, Mashinostroenie, M., 1988, 280 pp.

[12] A. A. Samarskij, P. N. Vabishchevich, Chislennye metody resheniya obratnyh zadach matematicheskoj fiziki, Izdatel'stvo LKI, M., 2009, 480 pp.

[13] J. V. Beck, B. Blackwell, C. R. St. Clair, Inverse Heat Conduction. Ill-posed Problems, A. Wiley Interscience Publ., N-Y., 1985, 308 pp. | Zbl

[14] A. N. Tihonov, A. V. Goncharskij, V. V. Stepanov, A. G. Yagola, Regulyariziruyushchie algoritmy i apriornaya informaciya, Nauka, M., 1983, 198 pp.

[15] A. N. Tihonov, A. V. Goncharskij, V. V. Stepanov, A. G. Yagola, Chislennye metody resheniya nekorrektnyh zadach, Nauka, M., 1990

[16] B. N. Chetverushkin, V. A. Sudakov, “Factor Modeling for Innovative Enterprises”, Math. Models Comp. Simul., 12:6 (2020), 907–914 | DOI | DOI | MR | Zbl

[17] V. Sudakov, “Improving Air Transportation by Using the Fuzzy Origin-Destination Matrix”, Mathematics, 9:11 (2021), 1236 | DOI

[18] N. Barchev, V. Sudakov, “On Determining the Position of Expert Confidence Concentration Points When Modifying Membership Functions”, Data Science and Intelligent Systems, CoMeSySo 2021, Lecture Notes in Networks and Systems, 231, eds. R. Silhavy, P. Silhavy, Z. Prokopova, Springer, Cham, 2021 | DOI

[19] V. A. Sudakov, T. V. Sivakova, “Applying an Agent-Based Approach to Modeling COVID-19”, Software engineering application in informatics, CoMeSySo 2021, Lecture Notes in Networks and Systems, 232, eds. R. Silhavy, P. Silhavy, Z. Prokopova, Springer, Cham, 2021 | DOI | MR

[20] V. Sudakov, T. Sivakova, “Use of fuzzy areas of preference in tasks of multi criteria evaluation of freight air transport”, IOP Conf. Ser.: Mater. Sci. Eng., 2020, 927–012060 | DOI

[21] A. A. Samarskij, Teoriya raznostnyh skhem, Uchebnoe posobie, Nauka, M., 1977, 656 pp.