Application of acoustic-vortex method for CFD-CAA modelling of multicopter noise
Matematičeskoe modelirovanie, Tome 35 (2023) no. 6, pp. 14-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

Quadcopters have become extremely popular and are used in areas ranging from monitoring traffic or fire conditions to distributing the Internet or cold drinks. Over the past ten years, there has been a sharp increase in the use of multicopters for various purposes. The noiselessness and efficiency of a propeller propulsion system are critical aspects in developing modern unmanned aerial vehicles. The development of this area of aviation technology in the context of tightening noise standards is impossible without effective optimization methods that work in conjunction with computer-aided design systems. Such a challenge requires the development of theoretical approaches to the numerical simulation of sound generation mechanisms by propellers of multicopters and the corresponding software. This article discusses software based on a method for calculating sound generation and noise emission by a drone propeller, considering the decomposition of the vortex and acoustic modes. The development of this method makes it possible to consider the influence of flow inhomogeneity and turbulence, rotor interference, sound diffraction by air-frame elements, impedance characteristics of the hull coating, and other factors while ensuring accuracy and speed of calculations.
Mots-clés : acoustic-vortex decomposition, pressure pulsations, noise, source, quasi-spiral modes.
Keywords: multicopter propeller, BPF
@article{MM_2023_35_6_a1,
     author = {A. A. Aksenov and S. F. Timushev and D. V. Klimenko and S. Yu. Fedoseev},
     title = {Application of acoustic-vortex method for {CFD-CAA} modelling of multicopter noise},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {14--36},
     publisher = {mathdoc},
     volume = {35},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_6_a1/}
}
TY  - JOUR
AU  - A. A. Aksenov
AU  - S. F. Timushev
AU  - D. V. Klimenko
AU  - S. Yu. Fedoseev
TI  - Application of acoustic-vortex method for CFD-CAA modelling of multicopter noise
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 14
EP  - 36
VL  - 35
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_6_a1/
LA  - ru
ID  - MM_2023_35_6_a1
ER  - 
%0 Journal Article
%A A. A. Aksenov
%A S. F. Timushev
%A D. V. Klimenko
%A S. Yu. Fedoseev
%T Application of acoustic-vortex method for CFD-CAA modelling of multicopter noise
%J Matematičeskoe modelirovanie
%D 2023
%P 14-36
%V 35
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_6_a1/
%G ru
%F MM_2023_35_6_a1
A. A. Aksenov; S. F. Timushev; D. V. Klimenko; S. Yu. Fedoseev. Application of acoustic-vortex method for CFD-CAA modelling of multicopter noise. Matematičeskoe modelirovanie, Tome 35 (2023) no. 6, pp. 14-36. http://geodesic.mathdoc.fr/item/MM_2023_35_6_a1/

[1] ABCNews: Whining drones bringing burritos and coffee are bitterly dividing Canberra residents, (Accessed: 11-03-2019) https://www.abc.net.au/news/2018-11-09/noise-from-drone-delivery-service-divides-canberra-residents/10484044

[2] BBC News: Why your pizza may never be delivered by drone, (Accessed: 11-03-2019) https://www.bbc.com/news/business-46483178

[3] P. A. Moshkov, V. F. Samokhin, A. A. Yakovlev, “Selection of an audibility criterion for propeller driven unmanned aerial vehicle”, Russian Aeronautics, 61:2 (2018), 149–155 | DOI | MR

[4] P. Moshkov, N. Ostrikov, V. Samokhin, A. Valiev, “Study of Ptero-G0 UAV Noise with Level Flight Conditions”, 25th AIAA/CEAS Aeroacoustics Conf. (2019), AIAA Paper No 2019–2514 | DOI

[5] N. Kloet, S. Watkins, R. Clothier, “Acoustic signature measurement of small multi-rotor unmanned aircraft systems”, Intern. J. of Micro Air Vehicles, 9, Feb. (2017), 3–14 | DOI

[6] Abhishek Kumar Sahai, Consideration of aircraft noise annoyance during conceptual air-craft design, PhD thesis, June 2016 (Accessed: 27-02-2020) http://publications.rwth-aachen.de/record/668901

[7] C. E. Tinney, J. Sirohi, “Multirotor Drone Noise at Static Thrust”, AIAA J., 56 (2018), 2816–2826 | DOI

[8] N. Intaratep, W. N. Alexander, W. J. Devenport, S. M. Grace, A. Dropkin, “Experimental Study of Quadcopter Acoustics and Performance at Static Thrust Conditions”, 22nd AI-AA/CEAS Aeroacoustics Conference (June 2016)

[9] Giorgia Sinibaldi, Luca Marino, “Experimental analysis on the noise of propellers for small UAV”, Applied Acoustics, 74:1, January (2013), 79–88 | DOI

[10] R. Peterson, “Regional Turboprop Resurgence Continues; Jet Demand Shifts Upward”, Air-craft Eng. Aerospace Technology, 80:2 (2004) | DOI

[11] M. S. Ryerson, M. Hansen, “The potential of turboprops for reducing aviation fuel consumption”, Transportation Res. Part D: Transport and Environment, 15:6 (2010), 305–314 | DOI

[12] C. Holsclaw, “Stage 5 Airplane Noise Standards”, Federal Register, 81, no. 1923, Jan., Federal Aviation Administration, 2016

[13] E. Franssen, Van C. Wichen, N. Nagelkerke, E. Lebret, “Aircraft noise around a large international airport and its impact on general health and medication use”, Occupational and Environmental Medicine, 61:5 (2004), 405–413 | DOI

[14] H. Swift, “A Review of the Literature Related to Potential Health Effects of Aircraft Noise”, Partnership for Air Transportation Noise and Emissions Reduction, Massachusetts Inst. of Technology, Cambridge, MA, July, 2010, PARTNERCOE-2010-003

[15] B. Magliozzi, D. B. Hanson, R. K. Amiet, “Propeller and Propfan Noise”, Aeroacoustics of Flight Vehicles: Theory and Practice, v. 1, NASA Reference Publ., 1258, ed. H.H. Hubbard, Hampton, VA, 1991, 1–64

[16] L. Gutin, On the Sound Field of a Rotating Propeller, NACA, TM-1195, Oct. 1948 | MR

[17] A. F. Deming, Noise from Propellers with Symmetrical Sections at Zero Blade Angle II, NACA TN-679, Dec. 1938

[18] D. B. Hanson, “Helicoidal Surface Theory for Harmonic Noise of Propellers in the Far Field”, AIAA Journal, 18:10 (1980), 1213–1220 | DOI | MR

[19] D. B. Hanson, “Sound from a Propeller at Angle of Attack: A New Theoretical Viewpoint”, Proc.: Mathematical and Physical Sciences, 449:1936 (1995), 315–328

[20] C. L. Morfey, “Rotating Blades and Aerodynamic Sound”, Journal of Sound and Vibration, 28:3 (1973), 587–617 | DOI

[21] B. Magliozzi, F. B. Metzger, W. Baush, R. J. King, A Comprehensive Review of Helicopter Noise Literature, Federal Aviation Administration Rept. FAA-RD-75-79, June 1975

[22] F. Farassat, G. P. Succi, “A Review of Propeller Discrete Frequency Noise Prediction Technology with Emphasis on Two Current Methods for Time Domain Calculations”, J. of Sound and Vibration, 71:3 (1989), 399–419 | DOI | MR

[23] A. Guedel, Acoustique des ventilateurs, CETIAT, PYC LIVRES, 1999

[24] D. Croba, J. L. Kueny, “Unsteady flow computation in a centrifugal pump coupling of the impeller and the volute”, Fan Noise. An Intern. INCE Symp. (Senlis , France, 1992), 1992 | Zbl

[25] S. Chu, R. Dong, J. Katz, “The effect of blade-tongue interactions on the flow structure, pressure fluctuations and noise within a centrifugal pump”, Pump noise and vibrations. 1st International Symposium (Clamart, France, 1993)

[26] V. G. Bobkov, I. V. Abalakin, T. K. Kozubskaia, “Metodika rascheta aerodinamicheskikh kharakteristik vintov vertoleta na osnove reberno-orientirovannykh skhem v komplekse programm NOISEtte”, Kompiuternye issledovaniia i modelirovanie, 12:5 (2020), 1097–1122

[27] M. J. Lighthill, “On sound generated aerodynamically. Part I. General Theory”, Proceedings of the Royal Society / London A, 211 (1952), 564–587 | MR | Zbl

[28] N. Curle, “The influence of solid boundaries upon aerodynamic sound”, Proc. Royal Soc. A, 231 (1955), 505–514 | MR | Zbl

[29] J. E. Ffowcs-Williams, D. L. Hawkings, “Sound Generation by Turbulence and Surfaces in Arbitrary Motion”, Philosophical Transactions of the Royal Society of London, Series A: Mathematical Physical Sci, 264:1151 (1969), 321–342 | DOI | Zbl

[30] F. Farassat, M. K. Myers, “Extension of Kirchhhoff's formula to radiation from moving surfaces”, Journal of Sound and Vibration, 123 (1988), 451–461 | DOI | MR

[31] S. Caro, S. Moreau, “Comparaison d'une technique 2D de type Sears avec un calcul instationnaire direct pour le calcul du bruit de raies d'un ventilateur”, Bruit des ventilateurs a basse vitesse, Actes du colloque tenu a l'Ecole Centrale de Lyon les 8 et 9 novembre 2001 | MR

[32] S. Caro, R. Sandboge, J. Iyer, Y. Nishio, “Presentation of a CAA formulation based on Lighthill's analogy for fan noise”, Proc. of 3rd Intern. Symp. on Fan Noise 2007 (Lyon, France, 19-21 September, 2007), 19–21

[33] R. Sandboge, K. Washburn, Ch. Peak, “Validation of a CAA Formulation Based on Lighthill's Analogy for a Cooling Fan and Mower Blade Noise”, Proc. of 3rd Intern. Symp. on Fan Noise 2007 (Lyon, France, 19-21 September 2007)

[34] Y. J. Zhu, Y. H. Ou, J. Tian, “Experimental and Numerical Investigation on Noise of Rotor Blade Passing Outlet Grille”, NCEJ 2008

[35] De Reboul Silouane, Zerbib Nicolas, “Heather Andrew Use OpenFOAM coupled with Finite and Boundary Element Formulations for Computational Aero-Acoustics for Ducted Obstacles”, Inter Noise 2019

[36] H. S. Ribner, “The Generation of Sound by Turbulent Jets”, Advances in Applied Mechanics, 8 (1964), 103–182 | DOI

[37] P. A. Moshkov V. F. Samokhin, “Integral model of noise of an engine-propeller power plant”, J. of Eng. Phys. Thermophys., 91:2 (2018), 332–338 | DOI | MR

[38] V. Samokhin, P. Moshkov, A. Yakovlev, “Analytical model of engine fan noise”, Akustika, 32 (2019), 168–173 | DOI

[39] V. F. Kopiev, V. A. Titarev, I. V. Belyaev, “Development of a methodology for propeller noise calculation on high-performance computer”, TsAGI Sci. J., 45:3–4 (2014), 293–327 | DOI

[40] I. V. Abalakin, P. A. Bakhvalov, V. G. Bobkov, T. K. Kozubskaya, V. A. Anikin, “Numerical in-vestigation of the aerodynamic and acoustical properties of a shrouded rotor”, Fluid Dynamics, 51:3 (2016), 419–433 | DOI | MR | Zbl

[41] V. A. Titarev, G. A. Faranosov, S. A. Chernyshev, A. S. Batrakov, “Numerical modeling of the influence of the relative positions of a propeller and pylon on turboprop aircraft noise”, Acoustical Physics, 64:6 (2018), 760–773 | DOI

[42] A. Filippone, “Aircraft noise prediction”, Progress in Aerospace Sciences, 68 (2014), 27–63 | DOI

[43] V. G. Dmitriev, V. F. Samokhin, “Complex of algorithms and programs for calculation of air-craft noise”, TsAGI Sci. J., 45:3–4 (2014), 293–327 | DOI

[44] N. N. Ostrikov, S. L. Denisov, “Airframe shielding of noncompact aviation noise sources: theory and experiment”, 21st AIAA/CEAS Aeroacoustics Conf. (2015), AIAA Paper No 2015-2691 | DOI

[45] P. A. Moshkov, V. F. Samokhin, “Effect of spacing between pusher propeller and wing on environmental light aircraft noise”, TsAGI Sci. J., 47:6 (2016), 639–647 | DOI

[46] A. N. Kolmogorov, “Uravneniya turbulentnogo dvizheniya neszhimaemoj zhidkosti”, Izv. AN SSSR, ser. fiz., 6:1–2 (1942), 56–58

[47] D. I. Blohincev, Akustika neodnorodnoj dvizhushchejsya sredy, Nauka, M., 1986

[48] M. E. Goldstein, Aeroacoustics, McSRAW-HILL International Book Company, 1976

[49] E. P. Stolyarov, “Vozbuzhdenie zvuka malymi vozmushcheniyami entropii i zavihrennosti v prostranstvenno neodnorodnyh techeniyah szhimaemogo ideal'nogo gaza”, Akustika turbulentnyh potokov, Nauka, M., 1983

[50] S. C. Crow, “Aerodynamic Sound Emission as a Singular Perturbation Problem”, Studies in Applied Mathematics, XLIX:1 (1970) | DOI

[51] K. I. Artamonov, Termogidroakusticheskaia ustoichivost, Mashinostroenie, M., 1982, 261 pp. | MR

[52] D. C. Wilcox, “Turbulence modeling for CFD”, Software package for gas and fluid flow simulation FlowVision. Version 2.5.0. Manual, DCW Industries, Inc., 1994, 460 pp.

[53] Software package for gas and fluid flow simulation FlowVision. Version 2.5.0. Manual, CAPVIDIA, Leuven, Belgium, 1999–2007, 284 pp.

[54] K. J. Baumeister, Time-dependent difference theory for noise propogation in a two-dimensional duct, AIAA Paper No 80-0098, 1980, 7 pp.

[55] S. Timouchev, J. Tourret, “Numerical Simulation of BPF Pressure Pulsation Field in Centrifugal Pumps”, 19th Intern. Pump Users Symp. (Houston, Texas, USA, 25-28 Feb 2002), 85–105

[56] S. Timouchev, An. Nedashkovsky, G. Pavic, “Experimental Validation of Axial Fan 3D Acoustic-Vortex Method CFD-CAA Study”, Proc. of 3rd Int. Symp. on Fan Noise 2007 (19-21 September 2007, Lyon, France)

[57] A. A. Aksenov, V. N. Gavrilyuk, S. F. Timushev, “Numerical simulation of tonal fan noise of computers and air conditioning systems”, Acoustical Physics, 62:4 (2016), 447–455 | DOI

[58] S. F. Timushev, D. V. Klimenko, “Computation of BPF pressure pulsations in the LRE screw-centrifugal pump with 3D acoustic-vortex method”, INTER-NOISE and NOISE-CON Congress Conference Proc., 255:3 (2017), 4157–4165