Method of nonlinear monotone tangent in solution of transcendental equations
Matematičeskoe modelirovanie, Tome 35 (2023) no. 2, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of curvilinear monotone tangent in solving transcendental equations is proposed. In the denominator of the non-linear term of the expression for the mentioned tangent, a regulating relation used, which is a straight line with a control parameter. The algorithm for solving the problem described. Three examples of solving transcendental equations performed. The high efficiency of using the proposed method shown.
Keywords: nonlinear tangent, numerical solution, control parameter.
Mots-clés : transcendental equation, monotony
@article{MM_2023_35_2_a0,
     author = {A. M. Lipanov},
     title = {Method of nonlinear monotone tangent in solution of transcendental equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_2_a0/}
}
TY  - JOUR
AU  - A. M. Lipanov
TI  - Method of nonlinear monotone tangent in solution of transcendental equations
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 3
EP  - 14
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_2_a0/
LA  - ru
ID  - MM_2023_35_2_a0
ER  - 
%0 Journal Article
%A A. M. Lipanov
%T Method of nonlinear monotone tangent in solution of transcendental equations
%J Matematičeskoe modelirovanie
%D 2023
%P 3-14
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_2_a0/
%G ru
%F MM_2023_35_2_a0
A. M. Lipanov. Method of nonlinear monotone tangent in solution of transcendental equations. Matematičeskoe modelirovanie, Tome 35 (2023) no. 2, pp. 3-14. http://geodesic.mathdoc.fr/item/MM_2023_35_2_a0/

[1] E. I. Grigolyuk, V. I. Shalashilin, Problemy nelineinogo deformirovaniia, Nauka, M., 1988, 231 pp.

[2] A.M. Lipanov, “The multiparametric trajectory method for solving systems of functional equations”, DAN, 343:2 (1995), 153–155

[3] I. N. Bronshtein, K. A. Semendyaev, Spravochnik po matematike, Nauka, M., 1986, 544 pp.

[4] G.E. Forsythe, M.A. Malcolm, C.B. Moler, Computer Methods for Mathematical Computations, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1977, 259 pp. | MR

[5] Yu. E. Voskoboinikov, V. F. Points, Programmirovanie zadach v pakete Mathcad, Novosibirsk, 2002, 69 pp.