Method of nonlinear monotone tangent in solution of transcendental equations
Matematičeskoe modelirovanie, Tome 35 (2023) no. 2, pp. 3-14
Cet article a éte moissonné depuis la source Math-Net.Ru
The method of curvilinear monotone tangent in solving transcendental equations is proposed. In the denominator of the non-linear term of the expression for the mentioned tangent, a regulating relation used, which is a straight line with a control parameter. The algorithm for solving the problem described. Three examples of solving transcendental equations performed. The high efficiency of using the proposed method shown.
Keywords:
nonlinear tangent, numerical solution, control parameter.
Mots-clés : transcendental equation, monotony
Mots-clés : transcendental equation, monotony
@article{MM_2023_35_2_a0,
author = {A. M. Lipanov},
title = {Method of nonlinear monotone tangent in solution of transcendental equations},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {3--14},
year = {2023},
volume = {35},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2023_35_2_a0/}
}
A. M. Lipanov. Method of nonlinear monotone tangent in solution of transcendental equations. Matematičeskoe modelirovanie, Tome 35 (2023) no. 2, pp. 3-14. http://geodesic.mathdoc.fr/item/MM_2023_35_2_a0/
[1] E. I. Grigolyuk, V. I. Shalashilin, Problemy nelineinogo deformirovaniia, Nauka, M., 1988, 231 pp.
[2] A.M. Lipanov, “The multiparametric trajectory method for solving systems of functional equations”, DAN, 343:2 (1995), 153–155
[3] I. N. Bronshtein, K. A. Semendyaev, Spravochnik po matematike, Nauka, M., 1986, 544 pp.
[4] G.E. Forsythe, M.A. Malcolm, C.B. Moler, Computer Methods for Mathematical Computations, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1977, 259 pp. | MR
[5] Yu. E. Voskoboinikov, V. F. Points, Programmirovanie zadach v pakete Mathcad, Novosibirsk, 2002, 69 pp.