Simulation of propagation of video pulse signals of GPR in the Earth's lithosphere
Matematičeskoe modelirovanie, Tome 35 (2023) no. 12, pp. 31-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents the results of modeling the propagation of inharmonic signals from an antenna located on the Earth's surface through the upper layer of the lithosphere and the reflection of these signals from various inhomogeneities in the lithosphere in the case when a video pulse signal of a special form is applied to the antenna. The model used in this work is based on an explicit scheme of numerical integration of Maxwell's equations. In this scheme electric and magnetic fields are calculated at the same time points in the same nodes of the spatial grid, and splitting in spatial directions and physical processes is also used. The paper studies what information about the nature of the heterogeneity of the lithosphere can be extracted from the shape of the reflected signal. The influence of the parameters of the video pulse signal on the amplitude and shape of the signals reflected from typical inhomogeneities of the lithosphere is also investigated. It is shown that some types of inhomogeneities can be determined by the shape of the reflected signal.
Keywords: Maxwell's equations, splitting scheme, numerical integration.
@article{MM_2023_35_12_a2,
     author = {Z. V. Suvorova and I. V. Mingalev and O. V. Mingalev and O. I. Akhmetov and L. B. Volkomirskaya and O. A. Gulevich and A. E. Reznikov},
     title = {Simulation of propagation of video pulse signals of {GPR} in the {Earth's} lithosphere},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {31--50},
     publisher = {mathdoc},
     volume = {35},
     number = {12},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_12_a2/}
}
TY  - JOUR
AU  - Z. V. Suvorova
AU  - I. V. Mingalev
AU  - O. V. Mingalev
AU  - O. I. Akhmetov
AU  - L. B. Volkomirskaya
AU  - O. A. Gulevich
AU  - A. E. Reznikov
TI  - Simulation of propagation of video pulse signals of GPR in the Earth's lithosphere
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 31
EP  - 50
VL  - 35
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_12_a2/
LA  - ru
ID  - MM_2023_35_12_a2
ER  - 
%0 Journal Article
%A Z. V. Suvorova
%A I. V. Mingalev
%A O. V. Mingalev
%A O. I. Akhmetov
%A L. B. Volkomirskaya
%A O. A. Gulevich
%A A. E. Reznikov
%T Simulation of propagation of video pulse signals of GPR in the Earth's lithosphere
%J Matematičeskoe modelirovanie
%D 2023
%P 31-50
%V 35
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_12_a2/
%G ru
%F MM_2023_35_12_a2
Z. V. Suvorova; I. V. Mingalev; O. V. Mingalev; O. I. Akhmetov; L. B. Volkomirskaya; O. A. Gulevich; A. E. Reznikov. Simulation of propagation of video pulse signals of GPR in the Earth's lithosphere. Matematičeskoe modelirovanie, Tome 35 (2023) no. 12, pp. 31-50. http://geodesic.mathdoc.fr/item/MM_2023_35_12_a2/

[1] A. B. Shvartsburg, “Single-cycle waveforms and non-periodic waves in dispersive media (exactly solvable models)”, Physics-Uspekhi Advances in Physical Sciences, 41:1 (1998), 77–94 | DOI | DOI

[2] O. A. Gulevich, “O glubinnosti v georadiolokatsii s uchetom iavleniia interferentsii”, Zhurnal radioelektroniki, 2020, no. 9, 85–103 | DOI

[3] L. B. Volkomirskaya, O. A. Gulevich, A. E. Reznikov, “The influence of the type of pulse on the possibility of logging radiosounding”, Russian Geology and Geophysics, 59:11 (2020) | DOI

[4] A. Giannopoulos, “Modelling Ground Penetrating Radar by GprMax”, Construction and Building Materials, 19:10 (2005), 755–62 | DOI

[5] Y. Kane, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media”, IEEE Transactions on Antennas and Propagation, 14 (1966), 302–307 | DOI | Zbl

[6] J. J. Simpson, “Current and future applications of 3-D global Earth-ionospheric models based on the full-vector Maxwell's equations FDTD method”, Surveys Geophys, 30 (2009), 105–130 | DOI

[7] J. J. Simpson, A. Taflove, “A review of progress in FDTD Maxwell's equations modeling of impulsive subionospheric propagation below 300 kHz”, IEEE Transactions on Antennas and Propagation, 55:6, June (2007), 1582–1590 | DOI

[8] D. L. Paul, C. J. Railton, “Spherical ADI FDTD method with application to propagation in the Earth ionosphere cavity”, IEEE Transactions on Antennas and Propagation, 60:1, January (2012), 310–317 | DOI | MR | Zbl

[9] Y. Yu, J. J. Simpson, “An E-J collocated 3-D FDTD model of electromagnetic wave propagation in magnetized cold plasma”, IEEE Transactions on Antennas and Propagation, 58:2, February (2010), 469–478 | DOI | MR | Zbl

[10] A. N. Semenov, A. P. Smirnov, “Chislennoe modelirovanie uravnenij Maksvella s dispersnymi materialami”, Matem. Mod., 25:12 (2013), 19–32 | MR | Zbl

[11] I. V. Mingalev, O. V. Mingalev, Ahmetov O.I, Z. V. Suvorova, “Explicit Splitting Scheme for Maxwell's Equations”, Mathematical Models and Computer Simul., 11:4 (2019), 551–563 | DOI | DOI | MR | MR | Zbl