On the resonant frequencies of a partially shielded circular dielectric cylinder
Matematičeskoe modelirovanie, Tome 35 (2023) no. 11, pp. 47-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of diffraction of a TE-polarized electromagnetic wave on a circular dielectric slit resonator is investigated. Using the method of integral-summing identities, which is a variation of the partial domain method (PDM), the boundary value problem for the Helmholtz equation is reduced to an infinite system of linear algebraic equations (SLAE-2) with the Fredholm operator acting in the Hilbert space of infinite sequences with weight. In the special case of the problem, which corresponds to the absence of metallic tape on the boundary of the resonator, the explicit Cramer formulas for the calculation of the unknown coefficients of the potential function of the electromagnetic field were are derived from SLAE-2. On the basis of computational experiments, the complex resonant frequencies, which are approximate values of the natural frequencies of the slot resonator, are found.
Mots-clés : diffraction problem
Keywords: slot resonator, boundary value problem, partial domain method, truncation method, resonant frequencies.
@article{MM_2023_35_11_a3,
     author = {G. V. Abgaryan and Yu. V. Shestopalov and K. A. Romanov},
     title = {On the resonant frequencies of a partially shielded circular dielectric cylinder},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {47--61},
     publisher = {mathdoc},
     volume = {35},
     number = {11},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_11_a3/}
}
TY  - JOUR
AU  - G. V. Abgaryan
AU  - Yu. V. Shestopalov
AU  - K. A. Romanov
TI  - On the resonant frequencies of a partially shielded circular dielectric cylinder
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 47
EP  - 61
VL  - 35
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_11_a3/
LA  - ru
ID  - MM_2023_35_11_a3
ER  - 
%0 Journal Article
%A G. V. Abgaryan
%A Yu. V. Shestopalov
%A K. A. Romanov
%T On the resonant frequencies of a partially shielded circular dielectric cylinder
%J Matematičeskoe modelirovanie
%D 2023
%P 47-61
%V 35
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_11_a3/
%G ru
%F MM_2023_35_11_a3
G. V. Abgaryan; Yu. V. Shestopalov; K. A. Romanov. On the resonant frequencies of a partially shielded circular dielectric cylinder. Matematičeskoe modelirovanie, Tome 35 (2023) no. 11, pp. 47-61. http://geodesic.mathdoc.fr/item/MM_2023_35_11_a3/

[1] H. Hoenl, A. W. Maue, K. Westpfahl, Theorie der Beugung, Cop., Berlin etc, 1961, 428 pp. | MR

[2] L. Lewin, Theory of Waveguides: Techniques for the solution of waveguide problems, Newnes-Butterworths, 1975, 346 pp.

[3] Iu. G. Smirnov, Matematicheskie metody issledovaniia zadach elektrodinamiki, Informatsionno-izdatelskii tsentr PenzGU, Penza, 2009, 268 pp.

[4] R. Mittra, S. W. Li, Analytical Techniques in the Theory of Guided Waves, Macmillan Series in Electrical Science, 1971, 302 pp. | Zbl

[5] R. Mittra, Computer Techniques for Electromagnetics, Pergamon Press, Urbana, 1973, 485 pp. | MR | MR

[6] V. P. Shestopalov, Metod zadachi Rimana-Gilberta v teorii difraktsii i rasprostraneniia elektromagnitnykh voln, Izd-vo Kharkovskogo universiteta, Kh., 1971, 400 pp.

[7] V. V. Nikolskii, T. I. Nikolskaia, Elektrodinamika i rasprostranenie radiovoln, Nauka, M., 1989, 543 pp.

[8] A. S. Ilinskii, A. A. Kuraev, G. Ya. Slepyan, A. Ya. Slepyan, “The semi-inversion method in problems of wave diffraction on bifurcations of irregular plane waveguides”, Dokl. Akad. Nauk SSSR, 294:6 (1987), 1345–1349 | MR

[9] Yu. A. Tuchkin, V. P. Shestopalov, “Scattering of waves by a system of cylindrical screens of arbitrary profile with Dirichlet boundary conditions”, Dokl. Akad. Nauk SSSR, 1985, no. 5, 1107–1109 | MR

[10] V. N. Koshparenok, V. P. Shestopalov, “A rigorous solution of the problem of the perturbation of two circular cylinders with longitudinal slits”, U.S.S.R. Comput. Math. Math. Phys., 18:5 (1978), 121–137 | DOI | MR

[11] A. M. Radin, V. P. Shestopalov, “Diffraction of a plane wave by a sphere with a circular orifice”, U.S.S.R. Comput. Math. Math. Phys., 14:5 (1974), 137–148 | DOI | MR

[12] S. S. Vinogradov, Yu. A. Tuchkin, V. P. Shestopalov, “Summator equations with kernels in the form of Jacobi polynomials”, Sov. Phys., Dokl., 25 (1980), 531–532 | Zbl

[13] S. S. Vinogradov, Yu. A. Tuchkin, V. P. Shestopalov, “An effective solution of paired summation equations with kernels in the form of Legendre's associated functions”, Sov. Phys. Dokl., 23 (1978), 650–651 | MR | Zbl

[14] A. S. Ilinskii, E. Yu. Fomenko, “Investigation of infinite-dimensional systems of linear algebraic equations of the second kind in wave guide diffraction problems”, Comput. Math. Math. Phys., 31:3 (1991), 1–11 | MR | Zbl

[15] G. I. Veselov, V. M. Temnov, “Applicability of the reduction method in solution of algebraic systems in certain problems of diffraction”, U.S.S.R. Comput. Math. Math. Phys., 24:5 (1984), 63–69 | DOI | MR | MR

[16] G. V. Abgaryan, “A Finite Element Method and Partial Area Method in One Diffraction Problem”, Lobachevskii Journal of Mathematics, 43:5 (2022), 1228–1235 | DOI | MR

[17] N. Pleshchinskii, G. Abgaryan, B. Vildanov, “On Resonant Effects in the Semi-Infinite Waveguides with Barriers”, Lecture Notes in Comput. Sci. Eng., 141 (2021), 391–401 | DOI

[18] G. V. Abgaryan, “Electromagnetic Wave Diffraction on a Metal Diaphragm of Finite Thickness”, Lobachevskii Journal of Mathematics, 42:6 (2021), 1327–1333 | DOI | MR

[19] G. V. Abgaryan, “On the Resonant Passage of Electromagnetic Wave through Waveguide with Diaphragms”, Lobachevskii Journal of Mathematics, 41:7 (2020), 1315–1319 | DOI | MR | Zbl

[20] G. V. Abgaryan, N. B. Pleshchinskii, “On Resonant Frequencies in the Diffraction Problems of Electromagnetic Waves by the Diaphragm in a Semi-Infinite Waveguide”, Lobachevskii Journal of Mathematics, 41:7 (2020), 1325–1336 | DOI | MR | Zbl

[21] G. V. Abgaryan, N. B. Pleshchinskii, “On the Eigen Frequencies of Rectangular Resonator with a Hole in the Wall”, Lobachevskii J. of Mathematics, 40:10 (2019), 1631–1639 | DOI | MR | Zbl

[22] G. V. Abgarian, A. N. Khaibullin, A. E. Shipilo, “Metod chastichnykh oblastei v zadache difraktsii elektromagnitnoi volny na prodolnoi peregorodke v beskonechnom volnovode”, Izvestiia vysshikh ucheb. zavedenii. Povolzhskii reg. Fiz. matem. nauki, 2022, no. 4, 3–16

[23] Y. Shestopalov, “Cloaking: analytical theory for benchmark structures”, Journal of Electro-magnetic Waves and Applications, 2020, no. 4, 485–510

[24] Y. Shestopalov, “Resonance Scattering by a Circular Dielectric Cylinder”, Radio Science, 2021, no. 2, 172–178

[25] V. Shestopalov, Y. Shestopalov, Spectral Theory and Excitation of Open Structures, IEE Publ., London, 1996 | Zbl

[26] Y. Shestopalov, “Trigonometric and Cylindrical Polynomials and Their Applications in Electromagnetics”, Applicable Analysis, 99:16 (2020), 2807–2822 | DOI | MR | Zbl

[27] Y. Shestopalov, “Resonance frequencies of arbitrarily shaped dielectric cylinder”, Applicable Analysis, 2021, 1–15 | MR