Pursuit problem with an arbitrary initial aiming angle
Matematičeskoe modelirovanie, Tome 35 (2023) no. 11, pp. 35-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

An exact solution to the pursuit problem in the "predator-prey" system is obtained for an arbitrary initial aiming angle $0\alpha_0180^\circ$ in the form of the equation of the pursuit curve. Exact implicit time equations for the motion of predator and prey and the distance between them are obtained. The lengths of the pursuit curves are found for arbitrary angles $\alpha_0$, including the shortest pursuit curve. A realistic numerical simulation of the movement of predator and prey in space and time has been carried out. The area of success of pursuit with a limited resource for the movement of the predator is determined. The obtained general solution of the pursuit problem with an arbitrary initial aiming angle provides wide opportunities for numerical modeling, which is important for providing a high level of applied mathematical training for future researchers, engineers, and teachers.
Keywords: pursuit problem, mathematical modeling, numerical modeling.
@article{MM_2023_35_11_a2,
     author = {V. Yu. Bodryakov},
     title = {Pursuit problem with an arbitrary initial aiming angle},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {35--46},
     publisher = {mathdoc},
     volume = {35},
     number = {11},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_11_a2/}
}
TY  - JOUR
AU  - V. Yu. Bodryakov
TI  - Pursuit problem with an arbitrary initial aiming angle
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 35
EP  - 46
VL  - 35
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_11_a2/
LA  - ru
ID  - MM_2023_35_11_a2
ER  - 
%0 Journal Article
%A V. Yu. Bodryakov
%T Pursuit problem with an arbitrary initial aiming angle
%J Matematičeskoe modelirovanie
%D 2023
%P 35-46
%V 35
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_11_a2/
%G ru
%F MM_2023_35_11_a2
V. Yu. Bodryakov. Pursuit problem with an arbitrary initial aiming angle. Matematičeskoe modelirovanie, Tome 35 (2023) no. 11, pp. 35-46. http://geodesic.mathdoc.fr/item/MM_2023_35_11_a2/

[1] N. L. Zakharieva, V. B. Khoziev, P. D. Shirkov, “Modelirovanie i obrazovanie”, Matem. Modelirovanie, 11:5 (1999), 101–116

[2] P. Bouguer, “Sur de nouvelles courbes auxquelles on peut donner le nom de lignes de poursuite”, Memoires de mathematique et de physique tires des registres de l'Academie royale des sciences, 1732, 1–14

[3] P.-L. M. de Maupertuis, “Sur les courbes de poursuite”, Memoires de mathematique et de physique tires des registres de l'Academie royale des sciences, 1732, 15–16

[4] T. de Saint-Laurent, “Geometrie transcendante. Solution nouvelle d'un probleme enonce dans la correspondance sur l'ecole polytechnique”, Annales de Mathematiques Pures et Appliquees de Gergonne, 13 (1822–1823), 145–162 | MR

[5] C. C. Puckette, “The curve of pursuit”, The Mathem. Gazette, 37:322 (1953), 256–260 | DOI | MR | Zbl

[6] W. R. Utz, “Pursuit problems for independent study”, The American Mathematical Monthly, 82:4 (1975), 398–399 | DOI | MR

[7] J. C. Barton, C. J. Eleizer, “On Pursuit Curves”, J. Austral. Soc. Ser.B, 41:3 (2000), 358–371 | DOI | MR | Zbl

[8] Z. K. Silagadze, O. I. Chashchina, “Zadacha presledovaniia zaitsa volkom kak uprazhnenie elementarnoi matematiki”, Vestnik NGU. Seriia: Phizika, 5:2 (2010), 111–115

[9] S. Moiseeva, Optimal Control Problems, Curves of Pursuit, MS Thesis (Mathematics), The University of New Mexico, Albuquerque (New Mexico, USA), 2011, 107 pp.

[10] L. I. Kuzmina, Yu. V. Osipov, “Raschet dliny traektorii dlia zadachi presledovaniia”, Vestnik MGSU, 2013, no. 12, 20–26

[11] P. Haggstrom, Solving a basic pursuit curve problem, , 2014, 4 pp. (data obrascheniya: 04.02.2023) www.gotohaggstrom.com

[12] V. F. Ochkov, I. E. Vasileva, “Application of difference schemes to decision the pursuit problem”, SPIIRAS Proceedings, 18:6 (2019), 1407–1433 | DOI

[13] A. A. Dubanov, Komputernoe modelirovanie v zadachakh presledovaniia, monografiia, Publishing Center RIOR, M., 2023, 161 pp.

[14] O. Ibidapo-Obe, O. S. Asaolu, A. B. Badiru, “Generalized Solutions of the Pursuit Problem in Three-dimensional Euclidean Space”, Applied Math. Comp., 119:1 (2001), 35–45 | DOI | MR | Zbl