On numerical simulation of traveling Langmuir waves in warm plasma
Matematičeskoe modelirovanie, Tome 35 (2023) no. 11, pp. 21-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical simulation of traveling Langmuir waves in a warm plasma is carried out using a kinetic description of the process. Waves of this type can be excited by a powerful short laser pulse (the so-called wake wave). It is shown that the propagation velocities of perturbations at the moments of the distribution function of the second and third orders significantly exceed the propagation velocity of the charge density wave. An important aspect of the work is the comparison of kinetic and hydrodynamic models on the example of the considered problem. It is shown that the hydrodynamic model without taking into account the heat flux does not give a good approximation to the solution of the kinetic Vlasov equation. As a result, the closure problem for moment equations remains open.
Keywords: Vlasov kinetic equation, hydrodynamic plasma model, traveling waves, numerical simulation
Mots-clés : moment equations.
@article{MM_2023_35_11_a1,
     author = {A. A. Frolov and E. V. Chizhonkov},
     title = {On numerical simulation of traveling {Langmuir} waves in warm plasma},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {21--34},
     publisher = {mathdoc},
     volume = {35},
     number = {11},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_11_a1/}
}
TY  - JOUR
AU  - A. A. Frolov
AU  - E. V. Chizhonkov
TI  - On numerical simulation of traveling Langmuir waves in warm plasma
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 21
EP  - 34
VL  - 35
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_11_a1/
LA  - ru
ID  - MM_2023_35_11_a1
ER  - 
%0 Journal Article
%A A. A. Frolov
%A E. V. Chizhonkov
%T On numerical simulation of traveling Langmuir waves in warm plasma
%J Matematičeskoe modelirovanie
%D 2023
%P 21-34
%V 35
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_11_a1/
%G ru
%F MM_2023_35_11_a1
A. A. Frolov; E. V. Chizhonkov. On numerical simulation of traveling Langmuir waves in warm plasma. Matematičeskoe modelirovanie, Tome 35 (2023) no. 11, pp. 21-34. http://geodesic.mathdoc.fr/item/MM_2023_35_11_a1/

[1] R. C. Davidson, Methods in nonlinear plasma theory, Academic Press, New-Yor–London, 1972, 356 pp. | MR

[2] S. Yu. Luk'ianov, Goriachaia plazma i upravliaemyi iadernyi sintez, Nauka, M., 1975, 397 pp.

[3] A. A. Frolov, E. V. Chizhonkov, “Chislennoe modelirovanie plazmennyh kolebanii s uchetom teplovogo dvizheniia elektronov”, Vychisl. Metody Programm., 19 (2018), 194–206

[4] S. V. Bulanov, T. Zh. Esirkepov, M. Kando, J. K. Koga, A. S. Pirozhkov, T. Nakamura, S. S. Bulanov, C. B. Schroeder, E. Esarey, F. Califano, F. Pegoraro, “On the breaking of a plasma wave in a thermal plasma. I. The structure of the density singularity”, Physics of Plasmas, 19 (2012), 113102, 14 pp. | DOI

[5] E. V. Chizhonkov, A. A. Frolov, “Influence of electron temperature on breaking of plasma oscillations”, Russ. J. Numer. Anal. Math. Modelling, 34:2 (2019), 71–84 | DOI | MR | Zbl

[6] Ya. B. Zel'dovich, A. D. Myshkis, Elementy matematicheskoi fiziki, Nauka, M., 1973, 352 pp. | MR

[7] V. P. Silin, Vvedenie v kineticheskuiu teoriiu gazov, Nauka, M., 1971, 332 pp.

[8] A. F. Aleksandrov, L. S. Bogdankevich, A. A. Rukhadze, Principles of plasma electrodynamics, Springer, New York, 1984, 488 pp. | MR

[9] E. V. Chizhonkov, Mathematical aspects of modelling oscillations and wake waves in plasma, CRC Press, Boca Raton, 2019, 293 pp. | Zbl

[10] I. M. Gel'fand, N. M. Zueva, V. S. Imshennik, O. V. Lokutsievskii, V. S. Ryaben'kii, L. G. Khazin, “The theory of electron plasma non-linear oscillations”, Computational Mathematics and Mathematical Physics, 7:2 (1967), 105–136 | DOI

[11] P. A. Mora, T. M. Antonsen, “Kinetic modeling of intense, short pulses propagating in tenuous plasmas”, Phys. Plasmas, 4:4 (1997), 217–229 | DOI | MR

[12] N. E. Andreev, L. M. Gorbunov, R. R. Ramazashvili, “Theory of a three-dimensional plasma wave excited by a high-intensity laser pulse in an underdense plasma”, Plasma Physics Reports, 23:4 (1997), 277–284

[13] C. J.R. Sheppard, “Cylindrical lenses focusing and imaging: a review”, Applied Optics, 52:4 (2013), 538–545 | DOI

[14] V. Oraevskii, R. Chodura, W. Feneberg, “Hydrodynamic equations for plasmas in strong magnetic fields I. Collisionless approximation”, Plasma Physics, 10 (1968), 819–828 | DOI | Zbl

[15] S. V. Iordanskij, “The Cauchy problem for the kinetic equation of plasma”, Transl. Amer. Math. Soc. Ser. 2, 35 (1964), 351–363 | MR | Zbl | Zbl

[16] G. Dimarco, L. Pareschi, “Numerical methods for kinetic equations”, Acta Numerica, 23 (2014), 369–520 | DOI | MR | Zbl

[17] C. Z. Cheng, G. Knorr, “The integration of the Vlasov equation in configuration space”, J. Computational Physics, 22 (1976), 330–351 | DOI | MR

[18] N. Besse, “Convergence of a semi-lagrangian scheme for the onedimensional Vlasov-Poisson system”, SIAM J. Num. Anal., 42:1 (2004), 350–382 | DOI | MR | Zbl

[19] R. B. Horne, M. P. Freeman, “A new code for electrostatic simulation by numerical integra-tion of the Vlasov and Ampere equations using MacCormack's method”, J. Computational Physics, 171 (2001), 182–200 | DOI | MR | Zbl

[20] R. W. MacCormack, “The effect of viscosity in hypervelocity impact cratering”, J. Spacecr. Rockets, 40:5 (2003), 757–763 | DOI | MR

[21] Z. I. Fedotova, “O primenenii raznostnoi shemy MakKormaka dlia zadach dlinnovolnovoi gidrodinamiki”, Vychislitelnye tekhnologii, 11, spetsvypusk, chast II (2002), 53–63 | Zbl

[22] E. V. Chizhonkov, “O skhemakh vtorogo poriadka tochnosti dlia modelirovaniia plazmennykh kolebanii”, Vychisl. Metody Programm., 21 (2020), 115–128

[23] A. A. Frolov, E. V. Chizhonkov, “Application of the energy conservation law in the cold plasma model”, Computational Math. and Math. Physics, 60:3 (2020), 498–513 | DOI | MR | Zbl

[24] V.S. Vladimirov (ed.), A Collection of Problems on the Equations of Mathematical Physics, Springer-Verlag, Berlin–Heidelberg, 1986, 288 pp. | MR | Zbl

[25] Z. Cai, Y. Fan, R. Li, “Globally hyperbolic regularization of Grad's moment system in one dimensional space”, Commun. Math. Sci., 11 (2013), 547–571 | DOI | MR | Zbl

[26] Z. Cai, M. Torrilhon, “On the Holway-Weiss debate: Convergence of the Grad-moment-expansion in kinetic gas theory”, Phys. Fluids, 31 (2019), 126105 | DOI

[27] Y. Di, Z. Kou, R. Li, “High order moment closure for Vlasov-Maxwell equations”, Front. Math. China, 10:5 (2015), 1087–1100 | DOI | MR | Zbl