Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_9_a5, author = {Yu. A. Pushkarev and V. V. Sviridov}, title = {Object recognition method based on their signal-geometric signs by means of a robotic security complex}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {83--106}, publisher = {mathdoc}, volume = {34}, number = {9}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_9_a5/} }
TY - JOUR AU - Yu. A. Pushkarev AU - V. V. Sviridov TI - Object recognition method based on their signal-geometric signs by means of a robotic security complex JO - Matematičeskoe modelirovanie PY - 2022 SP - 83 EP - 106 VL - 34 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_9_a5/ LA - ru ID - MM_2022_34_9_a5 ER -
%0 Journal Article %A Yu. A. Pushkarev %A V. V. Sviridov %T Object recognition method based on their signal-geometric signs by means of a robotic security complex %J Matematičeskoe modelirovanie %D 2022 %P 83-106 %V 34 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2022_34_9_a5/ %G ru %F MM_2022_34_9_a5
Yu. A. Pushkarev; V. V. Sviridov. Object recognition method based on their signal-geometric signs by means of a robotic security complex. Matematičeskoe modelirovanie, Tome 34 (2022) no. 9, pp. 83-106. http://geodesic.mathdoc.fr/item/MM_2022_34_9_a5/
[1] D. S. Chirov, S. P. Khripunov, “Intellektualnye metody raspoznavaniia takticheskikh situatsii v usloviiakh avtonomnogo primeneniia robototekhnicheskikh kompleksov voennogo naznacheniia”, Voprosy bezopasnosti, 2017, no. 1, 22–34 https://nbpublish.com/library_read_article.php?id=21643 | DOI
[2] V. S. Simankov, E. V. Lutsenko, Adaptivnoe upravlenie slozhnymi sistemami na osnove teorii raspoznavaniia obrazov, Monografiia (nauch. izd.), Tekhn. un-t Kuban. gos. tekhnol. un-ta, Krasnodar, 1999, 318 pp.
[3] A. L. Gorelik, V. A. Skripkin, Metody raspoznavaniia, Vysshaia shkola, M., 1984, 208 pp. | MR
[4] A. S. Potapov, Raspoznavanie obrazov i mashinnoe vospriiatie, Politekhnika, SPb., 2007, 548 pp.
[5] A. Faure, Perception et reconnaissance des forms, 1985
[6] V. N. Vasilev, I. P. Gurov, A. S. Potapov, Matematicheskie metody i algoritmicheskoe obespechenie analiza i raspoznavaniia izobrazhenii v informatsionno-telekommunikatsionnykh sistemakh, Vserossiiskii konkursnyi otbor obzorno-analiticheskikh statei po prioritetnomu napravleniiu «Informatsionno-telekommunikatsionnye sistemy», 2008, 46 pp. http://www.ict.edu.ru/itkonkurs2008
[7] I. O. Sakovich, Iu. S. Belov, “Obzor osnovnykh metodov konturnogo analiza dlia vydeleniia konturov dvizhushchikhsia obieektov”, Inzhen. zhurnal: nauka i innovatsii, 2014, no. 12
[8] S. Yan, X. He, Y. Hu, H. Zhang, M. Li, Q. Cheng, “Bayesian Shape Localization for Face Recognition Using Global and Local Textures”, IEEE Transactions on Circuits and Systems for Video Technology, 14:1, January (2004), 102–113 | DOI
[9] Pratt W.K., Digital image processing, NY, 1978
[10] I. V. Razin, V. V. Teterin, “Mathematical model for a quick estimate of the degree of similarity of images”, J. of Optical Technology, 68:11 (2001), 820 | DOI
[11] D. Lowe, “Object recognition from local scale-invariant features”, Proc. Int. Conf. on Computer Vision, 1999, 1150–1157 | DOI
[12] Q. Luo, T. M. Khoshgoftaar, “Unsupervised multiscale color image segmentation based on MDL principle”, IEEE Trans on Image Proc., 15:9 (2006), 2755–2761 | DOI
[13] L. R. Rabiner, “A tutorial on Hidden Markov Models and selected applications in speech recognition”, Proceedings of the IEEE, 77:2 (1989), 257–285 | DOI | MR
[14] A. Glazunov, “Kompiuternoe raspoznavanie chelovecheskikh lits”, Otkrytye sistemy, 2000, no. 3
[15] D. I. Samal, V. V. Starovoitov, Podkhody i metody raspoznavaniia liudei po fotoportretam, ITK NANB, Minsk, 1998, 54 pp.
[16] L. N. Chaban, Teoriia i algoritmy raspoznavaniia obrazov, Uch. posobie, Moskovskii gosudarstvennyi universitet geodezii i kartografii, M., 2004, 70 pp.
[17] E. Patrik, Osnovy teorii raspoznavaniia obrazov, ed. B.R. Levin, Sov. Radio, M., 1980
[18] Iu. A. Pushkarev, E. Iu. Pushkareva, Sistemy avtomaticheskogo upravleniia v raketno-kosmicheskoi tekhnike. Zadachi slezheniia i terminalnogo upravleniia, filial VA RVSN im. Petra Velikogo, Serpukhov, 2020, 357 pp.
[19] Iu. V. Prokhorov, Iu. A. Rozanov, Teoriia veroiatnostei. Osnovnye poniatiia. Predelnye teoremy. Sluchainye protsessy, Spravochnik, izd. 3, pererab., Nauka, M., 1987, 400 pp.
[20] V. V. Sviridov, Iu. A. Romanenko, “Metodicheskii podkhod k vyboru sredstv okhrany kriticheski vazhnogo obieekta”, Nauchno-prakticheskii mezhdists. zhurnal «Nadezhnost i kachestvo slozhnykh sistem», 2019, no. 1 (25), 87–90
[21] V.V. Sviridov, G.T. Povshenko, N.V. Fedoseenko, Programma dlia EVM «Raschet adaptivnogo gruppovogo upravleniia robototekhnicheskimi kompleksami voennogo naznacheniia na osnove gibkosti struktury sistemy upravleniia k izmeniaiushchimsia vneshnim usloviiam, s otsenkoi boevoi effektivnosti», Svidetelstvo o gosudarstvennoi registratsii programmy dlia EVM No 2020614057 RF, zaiavka No 2020612894; data registratsii v Reestre programm dlia EVM 26.03.2020
[22] G. S. Kondratenkov, Radiolokatsionnye sistemy obzora Zemli, Radio i sviaz, M., 1988, 269 pp.
[23] Iu. I. Zhuravlev, Kompiuter i zadachi vybora, Nauka, M., 1989, 208 pp. | MR
[24] Iu. S. Gulina, V. Ia. Koliuchkin, “Metodika rascheta veroiatnostei raspoznavaniia izobrazhenii chelovekom-operatorom”, Vestnik MGTU im. N.E. Baumana. Ser. «Priborostroenie», 2012, no. 1
[25] S. V. Subbotin, D. Iu. Bolshakov, “Prilozhenie baiesovskogo klassifikatora dlia raspoznavaniia klassov tselei”, Radiotekhnika, 2006, no. 4
[26] A. A. Tropchenko, A. Iu. Tropchenko, Metody vtorichnoi obrabotki i raspoznavaniia izobrazhenii, Uchebnoe posobie, Universitet ITMO, SPb., 2015, 215 pp.
[27] B. M. Shchigolev, Matematicheskaia obrabotka nabliudenii, Fizmatlit, M., 1962