Object recognition method based on their signal-geometric signs by means of a robotic security complex
Matematičeskoe modelirovanie, Tome 34 (2022) no. 9, pp. 83-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers a methodological approach to the recognition of intrusion objects into a protected area using optoelectronic means of a robotic complex, which is based on the existence of a certain feature space (a set of signal and geometric features) for each class and type of object. The solved problem of comparing Bayesian a posteriori probabilities of classes (types) of objects is reduced to calculating a priori probabilities and energy distribution functions of signals and geometric parameters of objects, i.e. likelihood functions of a feature to a specific class (type) of an object. On the basis of the obtained parameters, the dependences of the probability of correct recognition, the probability of skipping, false recognition and confusion of objects on the coefficient of distinctness when the object signal energy deviates from the standard in smaller and larger directions are analyzed. The results obtained are necessary to solve the problem of adaptive group control of robotic complexes when solving operational and tactical tasks in an uncertain dynamic environment.
Keywords: robotic complex, adaptive group control, probability of correct recognition, probability of omission, feature space, a posteriori probability, likelihood function
Mots-clés : object.
@article{MM_2022_34_9_a5,
     author = {Yu. A. Pushkarev and V. V. Sviridov},
     title = {Object recognition method based on their signal-geometric signs by means of a robotic security complex},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {83--106},
     publisher = {mathdoc},
     volume = {34},
     number = {9},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_9_a5/}
}
TY  - JOUR
AU  - Yu. A. Pushkarev
AU  - V. V. Sviridov
TI  - Object recognition method based on their signal-geometric signs by means of a robotic security complex
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 83
EP  - 106
VL  - 34
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_9_a5/
LA  - ru
ID  - MM_2022_34_9_a5
ER  - 
%0 Journal Article
%A Yu. A. Pushkarev
%A V. V. Sviridov
%T Object recognition method based on their signal-geometric signs by means of a robotic security complex
%J Matematičeskoe modelirovanie
%D 2022
%P 83-106
%V 34
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_9_a5/
%G ru
%F MM_2022_34_9_a5
Yu. A. Pushkarev; V. V. Sviridov. Object recognition method based on their signal-geometric signs by means of a robotic security complex. Matematičeskoe modelirovanie, Tome 34 (2022) no. 9, pp. 83-106. http://geodesic.mathdoc.fr/item/MM_2022_34_9_a5/

[1] D. S. Chirov, S. P. Khripunov, “Intellektualnye metody raspoznavaniia takticheskikh situatsii v usloviiakh avtonomnogo primeneniia robototekhnicheskikh kompleksov voennogo naznacheniia”, Voprosy bezopasnosti, 2017, no. 1, 22–34 https://nbpublish.com/library_read_article.php?id=21643 | DOI

[2] V. S. Simankov, E. V. Lutsenko, Adaptivnoe upravlenie slozhnymi sistemami na osnove teorii raspoznavaniia obrazov, Monografiia (nauch. izd.), Tekhn. un-t Kuban. gos. tekhnol. un-ta, Krasnodar, 1999, 318 pp.

[3] A. L. Gorelik, V. A. Skripkin, Metody raspoznavaniia, Vysshaia shkola, M., 1984, 208 pp. | MR

[4] A. S. Potapov, Raspoznavanie obrazov i mashinnoe vospriiatie, Politekhnika, SPb., 2007, 548 pp.

[5] A. Faure, Perception et reconnaissance des forms, 1985

[6] V. N. Vasilev, I. P. Gurov, A. S. Potapov, Matematicheskie metody i algoritmicheskoe obespechenie analiza i raspoznavaniia izobrazhenii v informatsionno-telekommunikatsionnykh sistemakh, Vserossiiskii konkursnyi otbor obzorno-analiticheskikh statei po prioritetnomu napravleniiu «Informatsionno-telekommunikatsionnye sistemy», 2008, 46 pp. http://www.ict.edu.ru/itkonkurs2008

[7] I. O. Sakovich, Iu. S. Belov, “Obzor osnovnykh metodov konturnogo analiza dlia vydeleniia konturov dvizhushchikhsia obieektov”, Inzhen. zhurnal: nauka i innovatsii, 2014, no. 12

[8] S. Yan, X. He, Y. Hu, H. Zhang, M. Li, Q. Cheng, “Bayesian Shape Localization for Face Recognition Using Global and Local Textures”, IEEE Transactions on Circuits and Systems for Video Technology, 14:1, January (2004), 102–113 | DOI

[9] Pratt W.K., Digital image processing, NY, 1978

[10] I. V. Razin, V. V. Teterin, “Mathematical model for a quick estimate of the degree of similarity of images”, J. of Optical Technology, 68:11 (2001), 820 | DOI

[11] D. Lowe, “Object recognition from local scale-invariant features”, Proc. Int. Conf. on Computer Vision, 1999, 1150–1157 | DOI

[12] Q. Luo, T. M. Khoshgoftaar, “Unsupervised multiscale color image segmentation based on MDL principle”, IEEE Trans on Image Proc., 15:9 (2006), 2755–2761 | DOI

[13] L. R. Rabiner, “A tutorial on Hidden Markov Models and selected applications in speech recognition”, Proceedings of the IEEE, 77:2 (1989), 257–285 | DOI | MR

[14] A. Glazunov, “Kompiuternoe raspoznavanie chelovecheskikh lits”, Otkrytye sistemy, 2000, no. 3

[15] D. I. Samal, V. V. Starovoitov, Podkhody i metody raspoznavaniia liudei po fotoportretam, ITK NANB, Minsk, 1998, 54 pp.

[16] L. N. Chaban, Teoriia i algoritmy raspoznavaniia obrazov, Uch. posobie, Moskovskii gosudarstvennyi universitet geodezii i kartografii, M., 2004, 70 pp.

[17] E. Patrik, Osnovy teorii raspoznavaniia obrazov, ed. B.R. Levin, Sov. Radio, M., 1980

[18] Iu. A. Pushkarev, E. Iu. Pushkareva, Sistemy avtomaticheskogo upravleniia v raketno-kosmicheskoi tekhnike. Zadachi slezheniia i terminalnogo upravleniia, filial VA RVSN im. Petra Velikogo, Serpukhov, 2020, 357 pp.

[19] Iu. V. Prokhorov, Iu. A. Rozanov, Teoriia veroiatnostei. Osnovnye poniatiia. Predelnye teoremy. Sluchainye protsessy, Spravochnik, izd. 3, pererab., Nauka, M., 1987, 400 pp.

[20] V. V. Sviridov, Iu. A. Romanenko, “Metodicheskii podkhod k vyboru sredstv okhrany kriticheski vazhnogo obieekta”, Nauchno-prakticheskii mezhdists. zhurnal «Nadezhnost i kachestvo slozhnykh sistem», 2019, no. 1 (25), 87–90

[21] V.V. Sviridov, G.T. Povshenko, N.V. Fedoseenko, Programma dlia EVM «Raschet adaptivnogo gruppovogo upravleniia robototekhnicheskimi kompleksami voennogo naznacheniia na osnove gibkosti struktury sistemy upravleniia k izmeniaiushchimsia vneshnim usloviiam, s otsenkoi boevoi effektivnosti», Svidetelstvo o gosudarstvennoi registratsii programmy dlia EVM No 2020614057 RF, zaiavka No 2020612894; data registratsii v Reestre programm dlia EVM 26.03.2020

[22] G. S. Kondratenkov, Radiolokatsionnye sistemy obzora Zemli, Radio i sviaz, M., 1988, 269 pp.

[23] Iu. I. Zhuravlev, Kompiuter i zadachi vybora, Nauka, M., 1989, 208 pp. | MR

[24] Iu. S. Gulina, V. Ia. Koliuchkin, “Metodika rascheta veroiatnostei raspoznavaniia izobrazhenii chelovekom-operatorom”, Vestnik MGTU im. N.E. Baumana. Ser. «Priborostroenie», 2012, no. 1

[25] S. V. Subbotin, D. Iu. Bolshakov, “Prilozhenie baiesovskogo klassifikatora dlia raspoznavaniia klassov tselei”, Radiotekhnika, 2006, no. 4

[26] A. A. Tropchenko, A. Iu. Tropchenko, Metody vtorichnoi obrabotki i raspoznavaniia izobrazhenii, Uchebnoe posobie, Universitet ITMO, SPb., 2015, 215 pp.

[27] B. M. Shchigolev, Matematicheskaia obrabotka nabliudenii, Fizmatlit, M., 1962