Numerical simulation of the evolution of an intense aerodynamic jet in the far-field propagation
Matematičeskoe modelirovanie, Tome 34 (2022) no. 7, pp. 49-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

The conditions for the outflow of an underexpanded supersonic jet from the LTRAC experiment (Laboratory for Turbulent Research in Aerospace and Combustion, Monash University, Australia) are considered. The analysis of the characteristic parameters of linear and nonlinear transport for the LTRAC jet is carried out using LES solutions from the near and far acoustic fields. In both cases, the fulfillment of the conditions of the linear scenario of sound transfer over distances characteristic of the LTRAC acoustic experiment is shown. To verify the theoretical estimates, numerical solutions of the spherical Burgers equation were also obtained using the initial data from the LES calculation. Solutions were obtained without and in the presence of a term in the Burgers equation corresponding to quadratic nonlinearity. The solutions responded to sound transfer at distances that were orders of magnitude greater than the distance between the acoustic microphone and the jet in the LTRAC experiment.
Keywords: numerical analysis, aeroacoustics, Burgers equation, LTRAC, supersonic jet.
@article{MM_2022_34_7_a3,
     author = {S. N. Gurbatov and I. Yu. Demin and A. A. Lisin and S. A. Karabasov and A. V. Tyurina},
     title = {Numerical simulation of the evolution of an intense aerodynamic jet in the far-field propagation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {49--62},
     publisher = {mathdoc},
     volume = {34},
     number = {7},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_7_a3/}
}
TY  - JOUR
AU  - S. N. Gurbatov
AU  - I. Yu. Demin
AU  - A. A. Lisin
AU  - S. A. Karabasov
AU  - A. V. Tyurina
TI  - Numerical simulation of the evolution of an intense aerodynamic jet in the far-field propagation
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 49
EP  - 62
VL  - 34
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_7_a3/
LA  - ru
ID  - MM_2022_34_7_a3
ER  - 
%0 Journal Article
%A S. N. Gurbatov
%A I. Yu. Demin
%A A. A. Lisin
%A S. A. Karabasov
%A A. V. Tyurina
%T Numerical simulation of the evolution of an intense aerodynamic jet in the far-field propagation
%J Matematičeskoe modelirovanie
%D 2022
%P 49-62
%V 34
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_7_a3/
%G ru
%F MM_2022_34_7_a3
S. N. Gurbatov; I. Yu. Demin; A. A. Lisin; S. A. Karabasov; A. V. Tyurina. Numerical simulation of the evolution of an intense aerodynamic jet in the far-field propagation. Matematičeskoe modelirovanie, Tome 34 (2022) no. 7, pp. 49-62. http://geodesic.mathdoc.fr/item/MM_2022_34_7_a3/

[1] C. L. Morfey, G. P. Howell, “Nonlinear propagation of aircraft noise in the atmosphere”, AIAA J., 19 (1981), 986–992 | DOI

[2] S. N. Gurbatov, O. V. Rudenko, “Statistical phenomena”, Nonlinear Acoustics, Chap. 13, eds. M. F. Hamilton, D. T. Blackstock, Academic, San Diego, CA, 1998, 377–398

[3] W. Baars, C. Tinney, M. Wochner, M. Hamilton, “On cumulative nonlinear acoustic wave-form distortions from high-speed jets”, J. Fluid Mech., 749 (2014), 331–366 | DOI

[4] M. F. Hamilton, “Effective Gol'dberg numbers for diverging waves”, J. Acoust. Soc. Am., 140:6 (2016), 4419–4426 | DOI

[5] K. L. Gee, V. W. Sparrow, M. M. James, J. M. Downing, C. M. Hobbs, T. B. Gabrielson, A. A. Atchley, “The role of nonlinear effects in the propagation of noise from high-power jet aircraft”, J. Acoust. Soc. Am., 123:6 (2008), 4082–4093 | DOI

[6] P. Pineau, C. Bogey, “Numerical investigation of wave steepening and shock coalescence near a cold Mach 3 jet”, J. Acoust. Soc. Am, 149 (2021), 357–370 | DOI

[7] D. M. Edgington-Mitchell, K. Oberleithner, D. R. Honnery, J. Soria, “Coherent structure and sound production in the helical mode of a screeching axisymmetric jet”, J. Fluid Mech., 748 (2014), 822–847 | DOI

[8] J. E. Ffowcs Williams, D. L. Hawkings, “Sound Generation by Turbulence and Surfaces in Arbitrary Motion”, Philos. Trans. A Math. Phys. Eng. Sci., 264:1151 (1969), 321–342 | Zbl

[9] M. L. Shur, P. R. Spalart, M. Kh. Strelets, “Noise Prediction for increasingly complex jets. Part I: Methods and tests. Part II: Applications”, Int. J. Aeroacoustics, 34:4 (2005), 21366

[10] S. N. Gurbatov, O. V. Rudenko, A. I. Saichev, Waves and Structures in Nonlinear Nondispersive Media, Higher Education Press, Beijing; Springer-Verlag, Berlin–Heidelberg, 2011, 472 pp.

[11] S. N. Gurbatov, I. Yu. Demin, V. V. Cherepennikov, B. O. Enflo, “Behavior of Intense Acoustic Noise at Large Distances”, Acoustical Physics, 53:1 (2007), 48–63 | DOI

[12] S. N. Gurbatov, O. V. Rudenko, A. V. Tyurina, “Singularities and spectral asymptotics of a random nonlinear wave in a nondispersive system”, Wave Motion, 95 (2020), 102519 | DOI | MR | Zbl

[13] V. A. Semiletov, S. A. Karabasov, “CABARET scheme with conservation-flux asynchronous time-stepping for nonlinear aeroacoustics problems”, Journal of Computational Physics, 253:15 (2013), 157165 | MR

[14] A. P. Markesteijn, S. A. Karabasov, “CABARET solutions on Graphics Processing Units for NASA jets: grid sensitivity and unsteady inflow condition effect”, Comptes Rendus Mécanique, 346:10 (2018), 948–963 | DOI

[15] A. P. Markesteijn, S. A. Karabasov, “Simulations of co-axial jet flows on Graphics Processing Units: the flow and noise analysis”, Philos. Trans. A Math. Phys. Eng. Sci., 377 (2019), 2159 | MR | Zbl