Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_5_a4, author = {S. I. Martynenko and I. G\"okalp and V. A. Bakhtin and M. Karaca and P. D. Toktaliev and P. A. Semenev}, title = {Application of robust multigrid technique for parallel solution of the initial-boundary problems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {73--87}, publisher = {mathdoc}, volume = {34}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_5_a4/} }
TY - JOUR AU - S. I. Martynenko AU - I. Gökalp AU - V. A. Bakhtin AU - M. Karaca AU - P. D. Toktaliev AU - P. A. Semenev TI - Application of robust multigrid technique for parallel solution of the initial-boundary problems JO - Matematičeskoe modelirovanie PY - 2022 SP - 73 EP - 87 VL - 34 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_5_a4/ LA - ru ID - MM_2022_34_5_a4 ER -
%0 Journal Article %A S. I. Martynenko %A I. Gökalp %A V. A. Bakhtin %A M. Karaca %A P. D. Toktaliev %A P. A. Semenev %T Application of robust multigrid technique for parallel solution of the initial-boundary problems %J Matematičeskoe modelirovanie %D 2022 %P 73-87 %V 34 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2022_34_5_a4/ %G ru %F MM_2022_34_5_a4
S. I. Martynenko; I. Gökalp; V. A. Bakhtin; M. Karaca; P. D. Toktaliev; P. A. Semenev. Application of robust multigrid technique for parallel solution of the initial-boundary problems. Matematičeskoe modelirovanie, Tome 34 (2022) no. 5, pp. 73-87. http://geodesic.mathdoc.fr/item/MM_2022_34_5_a4/
[1] U. Trottenberg, C. W. Oosterlee, A. Schüller, Multigrid, Academic Press, London, 2001 | MR | Zbl
[2] A. Brandt, S. F. McCormick, J. Ruge, Algebraic multigrid (AMG) for automatic multigrid solution with application to geodetic computations, Institute for Computational Studies, Fort Collins, Colorado, 1982
[3] A. Brandt, S. F. McCormick, J. Ruge, “Algebraic multigrid (AMG) for sparse matrix equations”, Sparsity and its Applications, ed. D.J. Evans, Cambridge University Press, Cambridge, 1984, 257–284 | MR
[4] J. E. Dendy (Jr.), “Black box multigrid”, J. Comp. Phys., 48 (1982), 366–386 | DOI | MR | Zbl
[5] J. E. Dendy (Jr.), “Black box multigrid for nonsymmetric problems”, Appl. Math. Comp., 13 (1983), 261–284 | DOI | MR
[6] P. O. Frederickson, O. A. McBryan, “Parallel superconvergent multigrid. Multigrid Methods: Theory”, Applications and Supercomputing, ed. S. McCormick, Marcel Dekker, New York, 1988, 195–210 | MR
[7] P. O. Frederickson, O. A. McBryan, “Recent developments for the PSMG multiscale method”, Multigrid Methods III, Proc. of the 3rd International Conference on Multigrid Methods, eds. W. Hackbusch, U. Trottenberg, Birkhauser, Basle, 1991, 21–40 | DOI | MR
[8] S. I. Martynenko, Mnogosetochnaia tekhnologiia: teoriia i prilozheniia, ed. M.P. Galanin, Fizmatlit, M., 2015
[9] S. Martynenko, W. Zhou, İ. Gökalp, V. Bakhtin, P. Toktaliev, “Parallelization of Robust Multigrid Technique Using OpenMP Technology”, Parallel Computing Technologies, PaCT 2021, Lecture Notes in Computer Science, 12942, ed. Malyshkin V., Springer, Cham, 2021
[10] J. M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems, Frontiers of Computer Science, 1988, 305 pp. | MR | Zbl
[11] S. I. Martynenko, Parallelnoe programmnoe obespechenie dlia universalnoi mnogosetochnoi tekhnologii, Triumf, M., 2020 | MR
[12] S. I. Martynenko, The robust multigrid technique: For black-box software, De Gruyter, Berlin, 2017 | MR | Zbl