Application of robust multigrid technique for parallel solution of the initial-boundary problems
Matematičeskoe modelirovanie, Tome 34 (2022) no. 5, pp. 73-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to development of a parallel multigrid algorithm for numerical solution of (non)linear initial-boundary value problems (implicit schemes) based on the Robust Multigrid Technique (RMT). Advantage of the proposed algorithm is opportunity of parallel solution of boundary value problems and initial-boundary value problems in unified manner using $m=1,2,3,\dots$ independent computers (threads, if parallelization technology OpenMP used). Coarse grids are generated only in space, the number of grid levels depends on the coefficient matrix condition number of the resulting system of linear algebraic equations. Point Gauss-Seidel method is used as a smoothing procedure for solving the initial-boundary value problem for the heat conductivity equation. Description of the algorithm and results of computational experiments performed using the OpenMP technology are given.
Keywords: initial boundary value problems, parallel computing, multigrid methods.
@article{MM_2022_34_5_a4,
     author = {S. I. Martynenko and I. G\"okalp and V. A. Bakhtin and M. Karaca and P. D. Toktaliev and P. A. Semenev},
     title = {Application of robust multigrid technique for parallel solution of the initial-boundary problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {73--87},
     publisher = {mathdoc},
     volume = {34},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_5_a4/}
}
TY  - JOUR
AU  - S. I. Martynenko
AU  - I. Gökalp
AU  - V. A. Bakhtin
AU  - M. Karaca
AU  - P. D. Toktaliev
AU  - P. A. Semenev
TI  - Application of robust multigrid technique for parallel solution of the initial-boundary problems
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 73
EP  - 87
VL  - 34
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_5_a4/
LA  - ru
ID  - MM_2022_34_5_a4
ER  - 
%0 Journal Article
%A S. I. Martynenko
%A I. Gökalp
%A V. A. Bakhtin
%A M. Karaca
%A P. D. Toktaliev
%A P. A. Semenev
%T Application of robust multigrid technique for parallel solution of the initial-boundary problems
%J Matematičeskoe modelirovanie
%D 2022
%P 73-87
%V 34
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_5_a4/
%G ru
%F MM_2022_34_5_a4
S. I. Martynenko; I. Gökalp; V. A. Bakhtin; M. Karaca; P. D. Toktaliev; P. A. Semenev. Application of robust multigrid technique for parallel solution of the initial-boundary problems. Matematičeskoe modelirovanie, Tome 34 (2022) no. 5, pp. 73-87. http://geodesic.mathdoc.fr/item/MM_2022_34_5_a4/

[1] U. Trottenberg, C. W. Oosterlee, A. Schüller, Multigrid, Academic Press, London, 2001 | MR | Zbl

[2] A. Brandt, S. F. McCormick, J. Ruge, Algebraic multigrid (AMG) for automatic multigrid solution with application to geodetic computations, Institute for Computational Studies, Fort Collins, Colorado, 1982

[3] A. Brandt, S. F. McCormick, J. Ruge, “Algebraic multigrid (AMG) for sparse matrix equations”, Sparsity and its Applications, ed. D.J. Evans, Cambridge University Press, Cambridge, 1984, 257–284 | MR

[4] J. E. Dendy (Jr.), “Black box multigrid”, J. Comp. Phys., 48 (1982), 366–386 | DOI | MR | Zbl

[5] J. E. Dendy (Jr.), “Black box multigrid for nonsymmetric problems”, Appl. Math. Comp., 13 (1983), 261–284 | DOI | MR

[6] P. O. Frederickson, O. A. McBryan, “Parallel superconvergent multigrid. Multigrid Methods: Theory”, Applications and Supercomputing, ed. S. McCormick, Marcel Dekker, New York, 1988, 195–210 | MR

[7] P. O. Frederickson, O. A. McBryan, “Recent developments for the PSMG multiscale method”, Multigrid Methods III, Proc. of the 3rd International Conference on Multigrid Methods, eds. W. Hackbusch, U. Trottenberg, Birkhauser, Basle, 1991, 21–40 | DOI | MR

[8] S. I. Martynenko, Mnogosetochnaia tekhnologiia: teoriia i prilozheniia, ed. M.P. Galanin, Fizmatlit, M., 2015

[9] S. Martynenko, W. Zhou, İ. Gökalp, V. Bakhtin, P. Toktaliev, “Parallelization of Robust Multigrid Technique Using OpenMP Technology”, Parallel Computing Technologies, PaCT 2021, Lecture Notes in Computer Science, 12942, ed. Malyshkin V., Springer, Cham, 2021

[10] J. M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems, Frontiers of Computer Science, 1988, 305 pp. | MR | Zbl

[11] S. I. Martynenko, Parallelnoe programmnoe obespechenie dlia universalnoi mnogosetochnoi tekhnologii, Triumf, M., 2020 | MR

[12] S. I. Martynenko, The robust multigrid technique: For black-box software, De Gruyter, Berlin, 2017 | MR | Zbl