Test problems of gas suspension dynamics using asymptotically exact solutions
Matematičeskoe modelirovanie, Tome 34 (2022) no. 12, pp. 59-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotically exact solutions of Riemann problems are constructed under the assumption of small scales of dynamic and thermal relaxations of a gas-dispersed mixture. Depending on the parameters of a gas suspension states on different sides of the initial arbitrary discontinuities, configurations with two shock waves, a rarefaction wave and a shock wave, as well as two rarefaction waves are formed. For these benchmarks, the computational properties of the balanced algorithm of a hybrid large-particle method, suitable for solving stiff problems, have been tested. The features of nonequilibrium wave flows of a gas suspension are studied, as well as the convergence of numerical solutions to asymptotically exact solutions with decreasing particle sizes of a gas suspension.
Keywords: dynamics of gas suspensions, phase relaxation, hybrid large-particle method.
Mots-clés : exact solutions
@article{MM_2022_34_12_a3,
     author = {D. V. Sadin},
     title = {Test problems of gas suspension dynamics using asymptotically exact solutions},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {59--74},
     publisher = {mathdoc},
     volume = {34},
     number = {12},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_12_a3/}
}
TY  - JOUR
AU  - D. V. Sadin
TI  - Test problems of gas suspension dynamics using asymptotically exact solutions
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 59
EP  - 74
VL  - 34
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_12_a3/
LA  - ru
ID  - MM_2022_34_12_a3
ER  - 
%0 Journal Article
%A D. V. Sadin
%T Test problems of gas suspension dynamics using asymptotically exact solutions
%J Matematičeskoe modelirovanie
%D 2022
%P 59-74
%V 34
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_12_a3/
%G ru
%F MM_2022_34_12_a3
D. V. Sadin. Test problems of gas suspension dynamics using asymptotically exact solutions. Matematičeskoe modelirovanie, Tome 34 (2022) no. 12, pp. 59-74. http://geodesic.mathdoc.fr/item/MM_2022_34_12_a3/

[1] B. L. Rozhdestvenskii, N. N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics, Translations of Mathematical Monographs, 55, Amer. Math. Soc., 1983 | DOI | MR | MR | Zbl

[2] C. Hirsch, Numerical computation of internal and external Flows, v. 2, Computational Methods for Inviscid and Viscous Flows, Wiley, New York, 1990, 691 pp. | Zbl

[3] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Matematicheskie voprosy chislennogo resheniia giperbolicheskikh system uravnenii, Fizmatlit, M., 2001, 608 pp. | MR

[4] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics, Springer-Verlag, Berlin–Heidelberg, 2009, 724 pp. | MR | Zbl

[5] R. I. Nigmatulin, Dinamika mnogofaznykh sred, Ch. 1, 2, v. 1, Nauka, M., 1987, 464 pp.; т. 2, 360 с.; R. I. Nigmatulin, Dynamics of multiphase media, CRC Press, USA, 1990

[6] G. A. Ruev, B. L. Rozhdestvenskii, V. M. Fomin, N. N. Yanenko, “Conservation Laws for Systems of Equations for Two-Phase Media”, Sov. Math. Dokl, 22:2 (1980), 352–357 | MR | Zbl

[7] L. A. Klebanov, A. E. Kroshilin, B. I. Nigmatulin, R. I. Nigmatulin, “On the Hyperbolicity, Stability and Correctness of the Cauchy Problem for the System of Equations of Two-Speed Motion of Two-Phase Media”, J. Appl. Math. Mech., 46:1 (1982), 66–74 | DOI | MR

[8] R. Abgrall, R. Saurel, “Discrete equations for physical and numerical compressible multiphase mixtures”, Journal of Computational Physics, 186:2 (2003), 361–396 | DOI | MR | Zbl

[9] R. Saurel, R. Abgrall, “A multiphase Godunov method for compressible multifluid and multiphase flows”, Journal of Computational Physics, 150:2 (1999), 425–467 | DOI | MR | Zbl

[10] S. A. Tokareva, E. F. Toro, “HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow”, J. of Computational Physics, 229 (2010), 3573–3604 | DOI | MR | Zbl

[11] M. Dumbser, D. S. Balsara, “A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems”, Journal of Computational Physics, 304 (2016), 275–319 | DOI | MR | Zbl

[12] I. Menshov, P. Zakharov, “On the composite Riemann problem for multimaterial fluid flows”, International Journal for Numerical Methods in Fluids, 76:2 (2015), 109–127 | DOI | MR

[13] B. A. Korneev, R. R. Tukhvatullina, E. B. Savenkov, “Numerical Study of Two-Phase Hyperbolic Models”, Math. Models Comput. Simul., 13 (2021), 1002–1013 | MR

[14] F. E. Marble, “Dynamics of dusty gases”, Ann. Rev. Fluid Mech., 2 (1970), 397–446 | DOI

[15] G. M. Arutyunyan, “Conditions of applicability of the results of the hydrodynamics of a perfect gas to disperse media”, Fluid Dynamics, 14 (1979), 118–121 | DOI

[16] V. A. Vakhnenko, B. I. Palamarchuk, “Description of shock-wave processes in a two-phase medium containing an incompressible phase”, Journal of Applied Mechanics and Technical Physics, 25 (1984), 101–107 | DOI

[17] A. S. Ivanov, V. V. Kozlov, D. V. Sadin, “Unsteady Flow of a Two-Phase Disperse Medium from a Cylindrical Channel of Finite Dimensions into the Atmosphere”, Fluid dynamics, 31:3 (1996), 386–391 | DOI | Zbl

[18] D. V. Sadin, Osnovy teorii modelirovaniia volnovykh geterogennykh protsessov, Military Engineering Space University, Saint-Petersburg, 2000, 60 pp.

[19] D. V. Sadin, “TVD scheme for stiff problems of wave dynamics of heterogeneous media of nonhyperbolic nonconservative type”, Comput. Math. and Math. Phys., 56 (2016), 2068–2078 | DOI | MR | Zbl

[20] D. V. Sadin, “Application of a hybrid large-particle method to the computation of the interaction of a shock wave with a gas suspension layer”, Computer research and modeling, 12:6 (2020), 1323–1338

[21] D. V. Sadin, “Efficient implementation of the hybrid large-particle method”, Math. Models Comp. Simul., 14:6 (2022), 946–954 | DOI | MR | Zbl

[22] D. V. Sadin, “Stiffness problem in modeling wave flows of heterogeneous media with a three-temperature scheme of interphase heat and mass transfer”, Journal of Applied Mechanics and Technical Physics, 43:2 (2002), 286–290 | DOI | Zbl

[23] D. V. Sadin, “Method for Computing Heterogeneous Wave Flows with Intense Phase Interaction”, Comput. Math. and Math. Phys., 38:6 (1998), 987–993 | MR | Zbl

[24] A. I. Ivandaev, A. G. Kutushev, D. A. Rudakov, “Numerical investigation of throwing a powder layer by a compressed gas”, Combustion, Explosion and Shock Waves, 31 (1995), 459–465 | DOI

[25] D. V. Sadin, “O zhestkosti system differentsialnykh uravnenii v chastnykh proizvodnykh, opisyvaiushchikh dvizheniia geterogennykh sred”, Matematicheskoe modelirovanie, 14:11 (2002), 43–53 | Zbl