On the stabilization of nonlinear cylindrical oscillations in a plasma with a current
Matematičeskoe modelirovanie, Tome 34 (2022) no. 12, pp. 43-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical model of the effect of axial current in plasma on cylindrical nonrelativistic nonlinear oscillations is constructed. The result of the coordinated interaction of electromagnetic fields and particles is a nonlinear traveling wave. For its initialization, the method for constructing missing initial conditions based on solving a linear problem in the form of Fourier-Bessel integrals is proposed. Numerical simulation of a traveling wave is carried out using the scheme of the finite difference method of the second order of accuracy. It is shown that the wave velocity increases with an increase in the magnitude of the current, which contributes to the removal of energy from the initial region of localization of oscillations. For this reason, the breaking effect is realized much later in time, that is, stabilization of oscillations is observed.
Keywords: plasma with current, numerical simulation, Fourier-Bessel method, finite difference method, traveling wave, breaking effect.
Mots-clés : plasma oscillations
@article{MM_2022_34_12_a2,
     author = {A. A. Frolov and E. V. Chizhonkov},
     title = {On the stabilization of nonlinear cylindrical oscillations in a plasma with a current},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {43--58},
     publisher = {mathdoc},
     volume = {34},
     number = {12},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_12_a2/}
}
TY  - JOUR
AU  - A. A. Frolov
AU  - E. V. Chizhonkov
TI  - On the stabilization of nonlinear cylindrical oscillations in a plasma with a current
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 43
EP  - 58
VL  - 34
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_12_a2/
LA  - ru
ID  - MM_2022_34_12_a2
ER  - 
%0 Journal Article
%A A. A. Frolov
%A E. V. Chizhonkov
%T On the stabilization of nonlinear cylindrical oscillations in a plasma with a current
%J Matematičeskoe modelirovanie
%D 2022
%P 43-58
%V 34
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_12_a2/
%G ru
%F MM_2022_34_12_a2
A. A. Frolov; E. V. Chizhonkov. On the stabilization of nonlinear cylindrical oscillations in a plasma with a current. Matematičeskoe modelirovanie, Tome 34 (2022) no. 12, pp. 43-58. http://geodesic.mathdoc.fr/item/MM_2022_34_12_a2/

[1] E. Esarey, C. B. Schroeder, W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators”, Rev. Mod. Phys., 81 (2009), 1229–1285 | DOI

[2] P. Salen, M. Basini, S. Bonetti et al, “Matter manipulation with extreme terahertz light: Progress in enabling THz technology”, Phys. Reports, 836-837 (2019), 1–74 | DOI

[3] R. C. Davidson, Methods in nonlinear plasma theory, Academic Press, New-York London, 1972, 356 pp.

[4] A. I. Akhiezer, R. V. Polovin, “Theory of wave motion of an electron plasma”, Sov. Phys. JETP, 3:5 (1956), 696–705 | MR | Zbl

[5] J. M. Dawson, “Nonlinear electron oscillations in a cold plasma”, Phys. Review, 113:2 (1959), 383–387 | DOI | MR | Zbl

[6] Ya. B. Zel'dovich, A. D. Myshkis, Elementy matematicheskoil fiziki, Nauka, M., 1973, 352 pp. | MR

[7] Y. B. Zel'dovich, A. V. Mamaev, S. F. Shandarin, “Laboratory observation of caus-tics, optical simulation of the motion of particles, and cosmology”, Soviet Phys. Uspekhi, 26:1 (1983), 77–83 | DOI

[8] M. N. Konyukov, “Nonlinear Langmuir electron oscillations in a plasma”, Sov. Phys. JETP, 10:3 (1960), 570–571 | MR

[9] L. M. Gorbunov, A. A. Frolov, E. V. Chizhonkov, N. E. Andreev, “Breaking of non-linear cylindrical plasma oscillations”, Plasma Phys. Reports, 36:4 (2010), 345–356 | DOI

[10] A. A. Frolov, E. V. Chizhonkov, “Langmuir oscillations breaking in inhomogeneous plasma”, Phys. Plasmas, 28:9 (2021), 092304, 7 pp. | DOI

[11] A. A. Frolov, E. V. Chizhonkov, “The effect of electron-ion collisions on breaking cylindrical plasma oscillations”, Math. Models Comp. Simul., 11:3 (2019), 438–450 | DOI | MR | Zbl

[12] E. V. Chizhonkov, A. A. Frolov, “Influence of electron temperature on breaking of plasma oscillations”, Russ. J. Numer. Anal. Math. Modelling, 34:2 (2019), 71–84 | DOI | MR | Zbl

[13] A. A. Frolov, E. V. Chizhonkov, “On the breaking of a slow extraordinary wave in a cold magnetoactive plasma”, Math. Models Comp. Simul., 14:1 (2022), 1–9 | DOI | MR | Zbl

[14] A. A. Frolov, E. V. Chizhonkov, “Simulation of a cylindrical slow extraordinary wave in cold magnetoactive plasma”, Computational Mathematics and Mathematical Physics, 62:5 (2022), 845–860 | DOI | MR | Zbl

[15] V. L. Ginzburg, A. A. Rukhadze, Volny v magnitoactivnoi plazme, Nauka, M., 1975, 256 pp.

[16] V. P. Silin, Vvedenie v kineticheskuiu teoriiu gazov, Nauka, M., 1971, 332 pp.

[17] V. A. Ditkin, A. P. Prudnikov, Integralnye preobrazovaniia i operatsionnoe ischislenie, Fizmatgiz, M., 1961, 524 pp.

[18] R. W. MacCormack, “The effect of viscosity in hypervelocity impact cratering”, J. Spacecr. Rockets, 40:5 (2003), 757–763 | DOI | MR

[19] Yu. I. Shokin, N. N. Yanenko, Method differentsialnogo priblizheniia. Primenenie k gazovoi dinamike, Nauka, Novosibirsk, 1985, 364 pp.

[20] J. C. Tannehill, D. A. Anderson, R. H. Pletcher, Computational fluid mechanics and heat transfer, Second edition, CRC Press, London, 1997, 803 pp. | MR

[21] Z. I. Fedotova, “O primenenii raznostnoi skhemy MakKormaka dlia zadach dlinnovolnovoi gidrodinamiki”, Vychislitelnye tekhnologii, 11, spetsvypusk, chast II (2002), 53–63 | Zbl

[22] J. Machalinska-Murawska, M. Szydlowski, “Lax-Wendroff and McCormack schemes for numerical simulation of unsteady gradually and rapidly varied open channel flow”, Archives of Hydro-Engineering and Environmental Mechanics, 60:1-4 (2013), 51–62 | DOI

[23] A. A. Frolov, E. V. Chizhonkov, “O chislennom modelirovanii medlennoi neobyknovennoi volny v magnitoaktivnoi plazme”, Vychisl. Metody Programm., 21 (2020), 420–439

[24] E. V. Chizhonkov, Mathematical aspects of modelling oscillations and wake waves in plasma, CRC Press, Boca Raton, 2019, 293 pp. | Zbl