Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_10_a0, author = {S. L. Denisov and N. N. Ostrikov}, title = {Finite element method application for the impedance eduction problem in case of {{\textquotedblleft}Interferometer} with the flow{\textquotedblright} installations}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--19}, publisher = {mathdoc}, volume = {34}, number = {10}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_10_a0/} }
TY - JOUR AU - S. L. Denisov AU - N. N. Ostrikov TI - Finite element method application for the impedance eduction problem in case of “Interferometer with the flow” installations JO - Matematičeskoe modelirovanie PY - 2022 SP - 3 EP - 19 VL - 34 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_10_a0/ LA - ru ID - MM_2022_34_10_a0 ER -
%0 Journal Article %A S. L. Denisov %A N. N. Ostrikov %T Finite element method application for the impedance eduction problem in case of “Interferometer with the flow” installations %J Matematičeskoe modelirovanie %D 2022 %P 3-19 %V 34 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2022_34_10_a0/ %G ru %F MM_2022_34_10_a0
S. L. Denisov; N. N. Ostrikov. Finite element method application for the impedance eduction problem in case of “Interferometer with the flow” installations. Matematičeskoe modelirovanie, Tome 34 (2022) no. 10, pp. 3-19. http://geodesic.mathdoc.fr/item/MM_2022_34_10_a0/
[1] M. G. Jones, W. R. Watson, T. L. Parrott, C. D. Smith, Design and Evaluation of Modifications to the NASA Langley Flow Impedance Tube, AIAA Paper 2004–2837, 2004
[2] O. C. Zienkiewicz, The Finite Element Method in Engineering Science, McGraw-Hill, London, 1971, 521 pp. | MR | Zbl
[3] W. R. Watson, M. G. Jones, S. E. Tanner, T. L. Parrot, “A Finite Element Propagation Model for Extracting Normal Incidence Impedance in Nonprogressive Acoustic Wave Fields”, Journal of Computational Physics, 125 (1996), 177–186 | DOI | Zbl
[4] M. K. Myers, “On the Acoustic Boundary Condition in the Presence of Flow”, Journal of Sound and Vibration, 71:3 (1980), 429–434 | DOI | Zbl
[5] W. R. Watson, M. G. Jones, T. L. Parrot, “Validation of an Impedance Eduction Method in Flow”, AIAA Journal, 37:7, July (1999) | DOI
[6] D. C. Pridmore-Brown, “Sound Propagation in a Fluid Flowing Through an Attenuating Duct”, Journal of Fluid Mechanics, 4 (1958), 393–406 | DOI | MR | Zbl
[7] P. Mungur, G. M. L. Gladwell, “Acoustic Wave Propagation in a Sheared Fluid Contained in a Duct”, Journal of Sound and Vibration, 9:1 (1969), 28–48 | DOI | Zbl
[8] J. H. Lan, C. Bread, Development and Validation of a 3D Linearized Euler Solver, AIAA Paper 2006–2585, 2006 | MR
[9] W. R. Watson, M. G. Jones, T. L. Parrot, A Quasi-3-D Theory for Impedance Eduction in Uniform Grazing Flow, AIAA Paper 2005–2848, 2005
[10] W. R. Watson, M. G. Jones, Impedance Eduction in a Duct Using the Linearized Euler Equations, AIAA Paper 2018–3442, 2018
[11] M. G. Jones, W. R. Watson, D. M. Nark, B. M. Howerton, Impedance Eduction for Multisegment Liners, AIAA Paper 2018–3441, 2018
[12] N. H. Schiller, M. G. Jones, B. Bertolucci, Experimental Evaluation of Acoustic Engine Liner Models Developed with COMSOL Multiphysics, AIAA Paper 2017–4186, 2017 | Zbl
[13] M. Herring Jensen, K. Shaposhnikov, Using the Linearized Navier-Stokes Equations to Model Acoustic Liners, AIAA Paper 2018–3783, 2018
[14] M. Herring Jensen, K. Shaposhnikov, Acoustic Liner Impedance Eduction using Parameter Estimation and the Linearized Navier-Stokes Equations, AIAA Paper 2019–2629, 2019
[15] C. K. W. Tam, H. Ju, M. G. Jones, W. R. Watson, T. L. Parrott, A computational and experimental study of slit resonators, AIAA Paper 2003–3310, 2003
[16] T. K. Kozubskaya, I. V. Abalakin, A. V. Gorobets, A. K. Mironov, Simulation of Acoustic Fields in Resonator-Type Problems Using Unstructured Meshes, AIAA Paper 2006-2519, 2006
[17] C. K. W. Tam, N. N. Pastouchenko, M. G. Jones, W. R. Watson, Experimental Validation of Numerical Simulations for an Acoustic Liner in Grazing Flow, AIAA Paper 2013–2222, 2013
[18] S. L. Denisov, N. N. Ostrikov, M. A. Yakovets, M. S. Ipatov, Investigation of Sound Propaga-tion in Rectangular Duct with Transversally Non-uniform Flow and Anisotropic Wall Impedance by Asymptotic Theory and 3D Finite Element Method, AIAA Paper 2019–2640, 2019
[19] R. Roncen, E. Piot, F. Méry, F. Simon, M. G. Jones, D. M. Nark, “Wavenumber-Based Impedance Eduction with a Shear Grazing Flow”, AIAA J., 58:4, April (2020), 1–11
[20] C. Weng, A. Schulz, D. Ronneberger, L. Enghardt, F. Bake, Impedance eduction in the presence of turbulent shear flow using the linearized Navier-Stokes equations, AIAA Paper 2017–3182, 2017
[21] N. N. Ostrikov, M. A. Yakovets, S. L. Denisov, M. S. Ipatov, Experimental Investigation of Mean Flow Profile Effects on Impedance Eduction for Multi-Segment Liners, AIAA Paper 2019–2638, 2019
[22] P. Filippi, Theoretical Acoustics and Numerical Techniques, Springer-Verlag GMBH, Wien, 1983, 360 pp. | MR | Zbl
[23] V. F. Kopiev, N. N. Ostrikov, S. L. Denisov, M. A. Yakovets, M. S. Ipatov, “Experimental investigation of mean flow profile effects on impedance eduction”, 50th Int. Congress and Exposition on Noise Control Eng., INTER-NOISE 2021 (1–5 August 2021, Washington, DC)
[24] M. G. Jones, D. M. Nark, B. M. Howerton, W. R. Watson, Uniform and Multizone Liner Results for the International Forum for Aviation Research, AIAA Paper 2020–2533, 2020
[25] L. Qi, K. Teo, X. Yang, Optimization and Control with Applications, Springer, Boston, 2005, 560 pp. | MR | Zbl