Finite element method application for the impedance eduction problem in case of “Interferometer with the flow” installations
Matematičeskoe modelirovanie, Tome 34 (2022) no. 10, pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deal with investigations of the Finite Element Method (FEM) application to sound propagation in "Interferometer with Flow" installations type in order to solve the problem of impedance eduction taking into account the inhomogeneity of the flow for the two-dimensional and three-dimensional geometries of the installation duct. The propagation of sound in a duct in the presence of a plane-parallel airflow is described by means of Linearized Euler equation, which is solved by FEM for a given sound frequency. Presented experimental and calculation results comparison demonstrates the influence of the calculated channel geometry on both the distribution of the sound field and the extracted impedance values.
Mots-clés : impedance
Keywords: admittance, liners, Interferometer with the flow, Finite Element Method (FEM).
@article{MM_2022_34_10_a0,
     author = {S. L. Denisov and N. N. Ostrikov},
     title = {Finite element method application for the impedance eduction problem in case of {{\textquotedblleft}Interferometer} with the flow{\textquotedblright} installations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {34},
     number = {10},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_10_a0/}
}
TY  - JOUR
AU  - S. L. Denisov
AU  - N. N. Ostrikov
TI  - Finite element method application for the impedance eduction problem in case of “Interferometer with the flow” installations
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 3
EP  - 19
VL  - 34
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_10_a0/
LA  - ru
ID  - MM_2022_34_10_a0
ER  - 
%0 Journal Article
%A S. L. Denisov
%A N. N. Ostrikov
%T Finite element method application for the impedance eduction problem in case of “Interferometer with the flow” installations
%J Matematičeskoe modelirovanie
%D 2022
%P 3-19
%V 34
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_10_a0/
%G ru
%F MM_2022_34_10_a0
S. L. Denisov; N. N. Ostrikov. Finite element method application for the impedance eduction problem in case of “Interferometer with the flow” installations. Matematičeskoe modelirovanie, Tome 34 (2022) no. 10, pp. 3-19. http://geodesic.mathdoc.fr/item/MM_2022_34_10_a0/

[1] M. G. Jones, W. R. Watson, T. L. Parrott, C. D. Smith, Design and Evaluation of Modifications to the NASA Langley Flow Impedance Tube, AIAA Paper 2004–2837, 2004

[2] O. C. Zienkiewicz, The Finite Element Method in Engineering Science, McGraw-Hill, London, 1971, 521 pp. | MR | Zbl

[3] W. R. Watson, M. G. Jones, S. E. Tanner, T. L. Parrot, “A Finite Element Propagation Model for Extracting Normal Incidence Impedance in Nonprogressive Acoustic Wave Fields”, Journal of Computational Physics, 125 (1996), 177–186 | DOI | Zbl

[4] M. K. Myers, “On the Acoustic Boundary Condition in the Presence of Flow”, Journal of Sound and Vibration, 71:3 (1980), 429–434 | DOI | Zbl

[5] W. R. Watson, M. G. Jones, T. L. Parrot, “Validation of an Impedance Eduction Method in Flow”, AIAA Journal, 37:7, July (1999) | DOI

[6] D. C. Pridmore-Brown, “Sound Propagation in a Fluid Flowing Through an Attenuating Duct”, Journal of Fluid Mechanics, 4 (1958), 393–406 | DOI | MR | Zbl

[7] P. Mungur, G. M. L. Gladwell, “Acoustic Wave Propagation in a Sheared Fluid Contained in a Duct”, Journal of Sound and Vibration, 9:1 (1969), 28–48 | DOI | Zbl

[8] J. H. Lan, C. Bread, Development and Validation of a 3D Linearized Euler Solver, AIAA Paper 2006–2585, 2006 | MR

[9] W. R. Watson, M. G. Jones, T. L. Parrot, A Quasi-3-D Theory for Impedance Eduction in Uniform Grazing Flow, AIAA Paper 2005–2848, 2005

[10] W. R. Watson, M. G. Jones, Impedance Eduction in a Duct Using the Linearized Euler Equations, AIAA Paper 2018–3442, 2018

[11] M. G. Jones, W. R. Watson, D. M. Nark, B. M. Howerton, Impedance Eduction for Multisegment Liners, AIAA Paper 2018–3441, 2018

[12] N. H. Schiller, M. G. Jones, B. Bertolucci, Experimental Evaluation of Acoustic Engine Liner Models Developed with COMSOL Multiphysics, AIAA Paper 2017–4186, 2017 | Zbl

[13] M. Herring Jensen, K. Shaposhnikov, Using the Linearized Navier-Stokes Equations to Model Acoustic Liners, AIAA Paper 2018–3783, 2018

[14] M. Herring Jensen, K. Shaposhnikov, Acoustic Liner Impedance Eduction using Parameter Estimation and the Linearized Navier-Stokes Equations, AIAA Paper 2019–2629, 2019

[15] C. K. W. Tam, H. Ju, M. G. Jones, W. R. Watson, T. L. Parrott, A computational and experimental study of slit resonators, AIAA Paper 2003–3310, 2003

[16] T. K. Kozubskaya, I. V. Abalakin, A. V. Gorobets, A. K. Mironov, Simulation of Acoustic Fields in Resonator-Type Problems Using Unstructured Meshes, AIAA Paper 2006-2519, 2006

[17] C. K. W. Tam, N. N. Pastouchenko, M. G. Jones, W. R. Watson, Experimental Validation of Numerical Simulations for an Acoustic Liner in Grazing Flow, AIAA Paper 2013–2222, 2013

[18] S. L. Denisov, N. N. Ostrikov, M. A. Yakovets, M. S. Ipatov, Investigation of Sound Propaga-tion in Rectangular Duct with Transversally Non-uniform Flow and Anisotropic Wall Impedance by Asymptotic Theory and 3D Finite Element Method, AIAA Paper 2019–2640, 2019

[19] R. Roncen, E. Piot, F. Méry, F. Simon, M. G. Jones, D. M. Nark, “Wavenumber-Based Impedance Eduction with a Shear Grazing Flow”, AIAA J., 58:4, April (2020), 1–11

[20] C. Weng, A. Schulz, D. Ronneberger, L. Enghardt, F. Bake, Impedance eduction in the presence of turbulent shear flow using the linearized Navier-Stokes equations, AIAA Paper 2017–3182, 2017

[21] N. N. Ostrikov, M. A. Yakovets, S. L. Denisov, M. S. Ipatov, Experimental Investigation of Mean Flow Profile Effects on Impedance Eduction for Multi-Segment Liners, AIAA Paper 2019–2638, 2019

[22] P. Filippi, Theoretical Acoustics and Numerical Techniques, Springer-Verlag GMBH, Wien, 1983, 360 pp. | MR | Zbl

[23] V. F. Kopiev, N. N. Ostrikov, S. L. Denisov, M. A. Yakovets, M. S. Ipatov, “Experimental investigation of mean flow profile effects on impedance eduction”, 50th Int. Congress and Exposition on Noise Control Eng., INTER-NOISE 2021 (1–5 August 2021, Washington, DC)

[24] M. G. Jones, D. M. Nark, B. M. Howerton, W. R. Watson, Uniform and Multizone Liner Results for the International Forum for Aviation Research, AIAA Paper 2020–2533, 2020

[25] L. Qi, K. Teo, X. Yang, Optimization and Control with Applications, Springer, Boston, 2005, 560 pp. | MR | Zbl