Influence of plasma inhomogeneity with allowance for bremsstrahlung on nonlinear absorption of an Alfv\'en wave by a dissipative plasma
Matematičeskoe modelirovanie, Tome 33 (2021) no. 8, pp. 83-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper investigates a mathematical model of the absorption of an Alfvén wave in an inhomogeneous incompressible dissipative plasma using the equations of two-fluid electromagnetic hydrodynamics. It is shown that a consequence of taking into account bremsstrahlung is the finiteness of the penetration depth of the Alfvén wave into an inhomogeneous plasma and a steady quasi-stationary regime of the Alfvén wave absorption. Density inhomogeneities of two types are considered – hump and hollows, which are distributed according to the Gaussian law. The dependences on the value of the hump of the penetration depth of the Alfvén wave into the inhomogeneous plasma and the maximum temperatures of electrons and ions are obtained. The study showed that an increase in the amplitude of the incident wave leads to an increase in the maximum values of the electron and ion temperatures, as well as the depth of penetration of the Alfvén wave into an inhomogeneous dissipative plasma.
Keywords: classical MHD, electromagnetic hydrodynamics (EMHD), Alphen wave, bremsstrahlung.
@article{MM_2021_33_8_a4,
     author = {A. A. Taiurskii},
     title = {Influence of plasma inhomogeneity with allowance for bremsstrahlung on nonlinear absorption of an {Alfv\'en} wave by a dissipative plasma},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {83--96},
     publisher = {mathdoc},
     volume = {33},
     number = {8},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_8_a4/}
}
TY  - JOUR
AU  - A. A. Taiurskii
TI  - Influence of plasma inhomogeneity with allowance for bremsstrahlung on nonlinear absorption of an Alfv\'en wave by a dissipative plasma
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 83
EP  - 96
VL  - 33
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_8_a4/
LA  - ru
ID  - MM_2021_33_8_a4
ER  - 
%0 Journal Article
%A A. A. Taiurskii
%T Influence of plasma inhomogeneity with allowance for bremsstrahlung on nonlinear absorption of an Alfv\'en wave by a dissipative plasma
%J Matematičeskoe modelirovanie
%D 2021
%P 83-96
%V 33
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_8_a4/
%G ru
%F MM_2021_33_8_a4
A. A. Taiurskii. Influence of plasma inhomogeneity with allowance for bremsstrahlung on nonlinear absorption of an Alfv\'en wave by a dissipative plasma. Matematičeskoe modelirovanie, Tome 33 (2021) no. 8, pp. 83-96. http://geodesic.mathdoc.fr/item/MM_2021_33_8_a4/

[1] L. D. Landau, E. M. Lifshits, L. P. Pitaevskii, Electrodynamics of Continuous Media, v. 8, 2nd ed., Butterworth-Heinemann, 1984 | MR | MR

[2] H. Alfven, Cosmical electrodynamics, Oxford University Press, 1950 | MR | Zbl

[3] Scott W. McIntosh, Bart Pe Pontien, Marts Carlsson, Viggo Hansteen, Paul Boerner, Marsel Goossens, “Alfvenic waves with sufficient energy to power the quiet solar corona and fast solar wind”, Nature, 475 (2011), 478–480

[4] M. B. Gavrikov, A. A. Taiurskii, “Prostranstvennoe nelineinoe zatukhanie alfvenovskikh voln v dissipativnoi plazme”, Matematicheskoe modelirovanie, 25:8 (2013), 65–79 | MR | Zbl

[5] M. B. Gavrikov, A. A. Taiurskii, “Nelineinoe pogloshchenie alfvenovskoi volny dissipativnoi plazmoi”, Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki, 2012, no. 4, 63–81

[6] M. B. Gavrikov, A. A. Taiurskii, “Nonlinear absorption of Alfven wave in dissipative plasma”, AIP Conference Proceedings, 1684, 2015, 070009, 13 pp. | MR

[7] M. B. Gavrikov, A. A. Taiurskii, “Spatial Nonlinear Absorption of Alfven Waves by Dissipative Plasma Taking Account Bremsstrahlung”, AIP Conference Proceedings, 1773, 2016, 090003, 14 pp. | DOI

[8] M. B. Gavrikov, A. A. Taiurskii, “Prostranstvennoe nelineinoe pogloshchenie alfvenovskoi volny dissipativnoi plazmoi”, Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki, 2017, no. 2, 40–59

[9] M. B. Gavrikov, A. A. Taiurskii, “Nonlinear Spatial Absorption of Alfven Waves by Dissipative Plasma”, Journal of Physics: Conference Series, 927 (2017), 012020 | DOI

[10] M. B. Gavrikov, A. A. Taiurskii, “The Influence of Plasma Inhomogeneity and Incident Wave Frequency on the Nonlinear Spatial Absorption of Alphven Waves In Dissipative Plasma”, Journal of Physics: Conference Series, 937 (2017), 012014 | DOI

[11] M. B. Gavrikov, A. A. Taiurskii, “Vliianie plazmennoi neodnorodnosti i chastoty alfvenovskoi volny na ee nelineinoe prostranstvennoe pogloshchenie dissipativnoi plazmoi”, Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki, 2018, no. 3, 82–96 | MR

[12] M. B. Gavrikov, Dvukhzhidkostnaia elektromagnitnaia gidrodinamika, KRASAND, M., 2018, 584 pp.

[13] K. V. Chukbar, Lektsii po iavleniiam perenosa v plazme, Izdatelskii dom “Intellekt”, Dolgoprudnyi, 2008, 256 pp.

[14] S. I. Braginskii, Reviews of Plasma Physics, v. 1, ed. M.A. Leontovich, Consultants bureau, New York, 1965, 205 | MR

[15] L. Spitzer, Physics of Fully Ionized Gases, 2nd ed., Interscience, New York, 1962, 170 pp. | MR

[16] S. Chapman, T. G. Cowling, The Mathematical Theory of Non-uniform Gase, Cambridge University Press, 1952 | MR | MR

[17] V. S. Imshennik, “O teploprovodnosti plazmy”, Astronomicheskii zhurnal, 38:4 (1961), 652–655

[18] L. D. Landau, “Kineticheskoe uravnenie v sluchae kulonovskogo vzaimodeistviia”, JETP, 7:2 (1937), 203–209 | Zbl

[19] G. Grim, “Protsessy izlucheniia v plazme”, Osnovy fiziki plazmy, v. 1, Energoatomizdat, M., 1983, 641 pp.