Computing experiment in the task about the flutter rectangular plate
Matematičeskoe modelirovanie, Tome 33 (2021) no. 6, pp. 107-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

The flutter of the rectangular plate at any direction of the velocity vector concerning the parties of the plate is considered. The numerical algorithm without saturation for the solution of the corresponding task on eigenvalues is constructed. Results of calculations of critical flutter speed and the approximate formula for the critical speed which at the set direction of the velocity vector of the flow, depends on two dimensionless parameters are given: dimensionless sonic speed in the plate and the dimensionless thickness of the plate.
Keywords: the flutter, the rectangular plate, the numerical algorithm without saturation, the task on eigenvalues.
@article{MM_2021_33_6_a7,
     author = {S. D. Algazin},
     title = {Computing experiment in the task about the flutter rectangular plate},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {107--116},
     publisher = {mathdoc},
     volume = {33},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_6_a7/}
}
TY  - JOUR
AU  - S. D. Algazin
TI  - Computing experiment in the task about the flutter rectangular plate
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 107
EP  - 116
VL  - 33
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_6_a7/
LA  - ru
ID  - MM_2021_33_6_a7
ER  - 
%0 Journal Article
%A S. D. Algazin
%T Computing experiment in the task about the flutter rectangular plate
%J Matematičeskoe modelirovanie
%D 2021
%P 107-116
%V 33
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_6_a7/
%G ru
%F MM_2021_33_6_a7
S. D. Algazin. Computing experiment in the task about the flutter rectangular plate. Matematičeskoe modelirovanie, Tome 33 (2021) no. 6, pp. 107-116. http://geodesic.mathdoc.fr/item/MM_2021_33_6_a7/

[1] A. A. Movchan, “O kolebaniiakh plastinki, dvizhushcheisia v gaze”, PMM, 20:2 (1956), 211–222

[2] Yu. N. Novichkov, “Flatter plastin i obolochek”, Itogi nauki i tekhniki, ser. Mekhanika deformiruemogo tverdogo tela, II, VINITI, M., 1978, 67–122 | MR

[3] D. Ejsli, G. L'yuessen, “Flatter tonkikh plastinok pri sovmestnom deistvii sdvigaiushchikh i normalnykh usilii na kraiakh”, Raketnaia tekhnika i kosmonavtika, 5:1 (1967)

[4] Ia. A. Metsaaver, “O flattere zashchemlennykh plastin”, Izv. AN SSSR, MTT, 1969, no. 4

[5] A. A. Il'yushin, I. A. Kiiko, “Planar cross-section law in supersonic aerodynamics and the panel flutter problem”, Mechanics of solids, 30:6 (1995), 126–130

[6] A. A. Il'yushin, I. A. Kiiko, “A new formulation of the problem of the flutter of a hollow shell”, J. Appl. Math. Mech., 58:3 (1994), 545–549 | DOI | MR | Zbl

[7] K. I. Babenko, Osnovy chislennogo analiza, Nauka, M., 1986, 744 pp. | MR

[8] S. D. Algazin, I. A. Kijko, “A numerical-analytic investigation of the flutter of a plate of arbitrary shape in the plane”, J. Appl. Math. Mech., 60:1 (1997), 169–172 | DOI | MR

[9] S. D. Algazin, I. A. Kijko, “Numerical examination flutter a rectangular plate”, Journal of Applied Mechanics and Technical Physics, 44:4 (2003), 482–488 | DOI | Zbl

[10] S. D. Algazin, I. A. Kijko, “Eigenvalue analysis for the operator in panel flutter problems”, Mechanics of Solids, 34:1 (1999), 141–146

[11] S. D. Algazin, “Discretization of linear equations of mathematical physics with separable variables”, Comput. Math. and Math. Physics, 35:3 (1995), 321–330 | MR | Zbl

[12] R. Bellman, Introduction to matrix analysis, McGraw-Hill Book Company, Inc., New-York-Toronto-London, 1960, 328 pp. | MR | MR | Zbl

[13] S. D. Algazin, H-matritsa novyi matematicheskii apparat dlia diskretizatsii mnogomernykh uravnenii matematicheskoi fiziki, LENAND, M., 2019, 152 pp.

[14] S. D. Algazin, “Localization of eigenvalues closed linear operators”, Siberian Mathematical Journal, 24:2 (1983), 155–159 | DOI | MR | Zbl

[15] S. D. Algazin, I. A. Kijko, Flatter plastin i obolochek, Izd. 2-e, perer. i dop., URSS, M., 2016, 278 pp.