Entropy stable discontinuous Galerkin method for two-dimensional Euler equations
Matematičeskoe modelirovanie, Tome 33 (2021) no. 2, pp. 125-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-dimensional version of the conservative entropy stable discontinuous Galerkin method for the Euler equations is proposed in the variables: density, momentum density and pressure. For the equation describing the dynamics of the mean pressure in a finite element, the approximation is constructed that is conservative in total energy. The special slope limiter ensures the fulfillment of the entropy inequality and the two-dimensional analogue of the monotonicity conditions for the numerical solution. The developed method is tested on some model gasdynamic problems.
Mots-clés : Euler equations
Keywords: the discontinuous Galerkin method, slope limiter, entropic inequality.
@article{MM_2021_33_2_a8,
     author = {M. D. Bragin and Y. A. Kriksin and V. F. Tishkin},
     title = {Entropy stable discontinuous {Galerkin} method for two-dimensional {Euler} equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {125--140},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_2_a8/}
}
TY  - JOUR
AU  - M. D. Bragin
AU  - Y. A. Kriksin
AU  - V. F. Tishkin
TI  - Entropy stable discontinuous Galerkin method for two-dimensional Euler equations
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 125
EP  - 140
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_2_a8/
LA  - ru
ID  - MM_2021_33_2_a8
ER  - 
%0 Journal Article
%A M. D. Bragin
%A Y. A. Kriksin
%A V. F. Tishkin
%T Entropy stable discontinuous Galerkin method for two-dimensional Euler equations
%J Matematičeskoe modelirovanie
%D 2021
%P 125-140
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_2_a8/
%G ru
%F MM_2021_33_2_a8
M. D. Bragin; Y. A. Kriksin; V. F. Tishkin. Entropy stable discontinuous Galerkin method for two-dimensional Euler equations. Matematičeskoe modelirovanie, Tome 33 (2021) no. 2, pp. 125-140. http://geodesic.mathdoc.fr/item/MM_2021_33_2_a8/

[1] E. Tadmor, “Entropy stable schemes”, Handbook of Numerical Analysis, 17, 2016, 467–493 | MR

[2] P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Soc. Indus. and Appl. Math., Philadelphia, 1973, 59 pp. | MR | Zbl

[3] S. Osher, “Riemann solvers, the entropy condition, and difference approximations”, SIAM J. Numer. Anal., 21 (1984), 217–235 | DOI | MR | Zbl

[4] F. Bouchut, C. Bourdarias, B. Perthame, “A MUSCL method satisfying all the numerical entropy inequalities”, Math. Comp., 65 (1996), 1439–1461 | DOI | MR | Zbl

[5] E. Tadmor, “Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems”, Acta Numerica, 2003, 451–512 | DOI | MR | Zbl

[6] F. Ismail, P. Roe, “Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks”, J. Comp. Phys., 228 (2009), 5410–5436 | DOI | MR | Zbl

[7] P. Chandrashekar, “Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations”, Comm. Comp. Phys., 14:5 (2013), 1252–1286 | DOI | MR | Zbl

[8] U. S. Fjordholm, S. Mishra, E. Tadmor, “Arbitrarily high-order accurate entropy stable es-sentially nonoscillatory schemes for systems of conservation laws”, SIAM J. Numer. Anal., 50:2 (2012), 544–573 | DOI | MR | Zbl

[9] X. Cheng, Y. Nie, “A third-order entropy stable scheme for hyperbolic conservation laws”, J. Hyperbolic Differ. Eq., 13:1 (2016), 129–145 | DOI | MR | Zbl

[10] V. V. Ostapenko, “Symmetric compact schemes with higher order conservative artificial viscosities”, Comp. Math. Math. Phys., 7:1 (2002), 980–999 | MR | Zbl

[11] A. A. Zlotnik, “Entropy-conservative spatial discretization of the multidimensional quasi-gasdynamic system of equations”, Comp. Math. Math. Phys., 57:4 (2017), 706–725 | DOI | MR | Zbl

[12] G. J. Gassner, A. R. Winters, D. A. Kopriva, “A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations”, Appl. Math. Comput., 272 (2016), 291–308 | MR | Zbl

[13] B. Cockburn, “An introduction to the discontinuous Galerkin method for convection-dominated Problems”, Lecture Notes in Mathematics, 1697, 1997, 150–268 | DOI | MR

[14] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Application of averaging to smooth the solution in DG method”, Keldysh Institute Preprints, 2017, 089, 32 pp.

[15] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Impact of different limiting functions on the order of solution obtained by RKDG”, MM, 5:4 (2013), 346–349 | MR | Zbl

[16] M. E. Ladonkina, V. F. Tishkin, “Godunov method: a generalization using piece-wise polynomial approximations”, Differential Equations, 51:7 (2015), 895–903 | DOI | MR | Zbl

[17] M. E. Ladonkina, V. F. Tishkin, “On Godunov-type methods of high order of accuracy”, Doklady Mathematics, 91:2 (2015), 189–192 | DOI | MR | Zbl

[18] V. F. Tishkin, V. T. Zhukov, E. E. Myshetskaya, “Justification of Godunov's scheme in the multidimensional case”, MM, 8:5 (2016), 548–556 | MR | Zbl

[19] Y. A. Kriksin, V. F. Tishkin, “Entropic regularization of Discontinuous Galerkin method in one-dimensional problems of gas dynamics”, Keldysh Institute Preprints, 2018, 100, 22 pp.

[20] M. D. Bragin, Y. A. Kriksin, V. F. Tishkin, “Discontinuous Galerkin Method with an Entropic Slope Limiter for Euler Equations”, Mathematical Models and Computer Simulations, 12:5 (2020), 824–833 | DOI | Zbl

[21] Y. A. Kriksin, V. F. Tishkin, “Numerical solution of the Einfeldt problem based on the discontinuous Galerkin method”, Keldysh Institute Preprints, 2019, 090, 22 pp.

[22] A. C. Robinson et al., “ALEGRA: An Arbitrary Lagrangian-Eulerian Multimaterial, Multiphysics Code”, 46th AIAA Aerospace Sciences Meeting and Exhibit (7–10 January 2008, Reno, Nevada), AIAA 2008-1235 | DOI

[23] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, G. P. Prokopov, Numerical solution of multidimensional problems of gas dynamics, Nauka, M., 1976, 400 pp. (In Russian) | MR

[24] R. Liska, B. Wendroff, “Comparison of several difference schemes on 1D and 2D test problems for the Euler equations”, SIAM J. Sci. Comp., 25:3, 995–1017 | DOI | MR | Zbl

[25] M. N. Mikhailovskaya, B. V. Rogov, “Monotone compact running schemes for systems of hyperbolic equations”, Comp. Math. Math. Phys., 52:4 (2012), 578–600 | DOI | MR | Zbl

[26] M. D. Bragin, B. V. Rogov, “Conservative limiting method for high-order bicompact schemes as applied to systems of hyperbolic equations”, Appl. Numer. Math., 151 (2020), 229–245 | DOI | MR | Zbl