Entropy stable discontinuous Galerkin method for two-dimensional Euler equations
Matematičeskoe modelirovanie, Tome 33 (2021) no. 2, pp. 125-140

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-dimensional version of the conservative entropy stable discontinuous Galerkin method for the Euler equations is proposed in the variables: density, momentum density and pressure. For the equation describing the dynamics of the mean pressure in a finite element, the approximation is constructed that is conservative in total energy. The special slope limiter ensures the fulfillment of the entropy inequality and the two-dimensional analogue of the monotonicity conditions for the numerical solution. The developed method is tested on some model gasdynamic problems.
Mots-clés : Euler equations
Keywords: the discontinuous Galerkin method, slope limiter, entropic inequality.
@article{MM_2021_33_2_a8,
     author = {M. D. Bragin and Y. A. Kriksin and V. F. Tishkin},
     title = {Entropy stable discontinuous {Galerkin} method for two-dimensional {Euler} equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {125--140},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_2_a8/}
}
TY  - JOUR
AU  - M. D. Bragin
AU  - Y. A. Kriksin
AU  - V. F. Tishkin
TI  - Entropy stable discontinuous Galerkin method for two-dimensional Euler equations
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 125
EP  - 140
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_2_a8/
LA  - ru
ID  - MM_2021_33_2_a8
ER  - 
%0 Journal Article
%A M. D. Bragin
%A Y. A. Kriksin
%A V. F. Tishkin
%T Entropy stable discontinuous Galerkin method for two-dimensional Euler equations
%J Matematičeskoe modelirovanie
%D 2021
%P 125-140
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_2_a8/
%G ru
%F MM_2021_33_2_a8
M. D. Bragin; Y. A. Kriksin; V. F. Tishkin. Entropy stable discontinuous Galerkin method for two-dimensional Euler equations. Matematičeskoe modelirovanie, Tome 33 (2021) no. 2, pp. 125-140. http://geodesic.mathdoc.fr/item/MM_2021_33_2_a8/