Numerical solution of the inverse Stefan problem in the analysis of artificial freezing of rock mass
Matematičeskoe modelirovanie, Tome 33 (2021) no. 2, pp. 93-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers the adjustment of parameters for the heat transfer model in a rock mass in the conditions of its artificial freezing. Adjustment of the model parameters according to the temperature measurements of the rock mass in the control-thermal wells is made by solving the coefficient inverse Stefan problem. The statement of the inverse Stefan problem is presented, and a numerical algorithm for its solution is proposed and implemented. The numerical algorithm is based on iterative minimization of the smoothing functional of the mismatch between the measured and calculated temperatures in control-thermal wells. The properties of the smoothing functional in the phase space of the rock thermophysical properties and peculiarities of selection of smoothing functional parameters are studied.
Keywords: artificial ground freezing, frozen wall, inverse Stefan problem, mathematical model, model parameterization, Tikhonov regularization.
@article{MM_2021_33_2_a6,
     author = {M. A. Semin and A. V. Zaitsev and L. Y. Levin},
     title = {Numerical solution of the inverse {Stefan} problem in the analysis of artificial freezing of rock mass},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {93--108},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_2_a6/}
}
TY  - JOUR
AU  - M. A. Semin
AU  - A. V. Zaitsev
AU  - L. Y. Levin
TI  - Numerical solution of the inverse Stefan problem in the analysis of artificial freezing of rock mass
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 93
EP  - 108
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_2_a6/
LA  - ru
ID  - MM_2021_33_2_a6
ER  - 
%0 Journal Article
%A M. A. Semin
%A A. V. Zaitsev
%A L. Y. Levin
%T Numerical solution of the inverse Stefan problem in the analysis of artificial freezing of rock mass
%J Matematičeskoe modelirovanie
%D 2021
%P 93-108
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_2_a6/
%G ru
%F MM_2021_33_2_a6
M. A. Semin; A. V. Zaitsev; L. Y. Levin. Numerical solution of the inverse Stefan problem in the analysis of artificial freezing of rock mass. Matematičeskoe modelirovanie, Tome 33 (2021) no. 2, pp. 93-108. http://geodesic.mathdoc.fr/item/MM_2021_33_2_a6/

[1] N. G. Trupak, Zamorazhivanie gornykh porod pri prokhodke stvolov, Ugletekhizdat, M., 1954, 895 pp.

[2] G. I. Mankovskii, Spetsialnye sposoby sooruzheniia stvolov shakht, Nauka, M., 1965, 315 pp.

[3] SP 45.13330.2012 Zemlianye sooruzheniia, osnovaniia i fundamenty. Aktualizirovannaia redaktsiia SNiP 3.02.01-87

[4] SP 103.13330.2012 Zashchita gornykh vyrabotok ot podzemnykh i poverkhnostnykh vod

[5] S. Papakonstantinou, G. Anagnostou, E. Pimentel, “Evaluation of ground freezing data from the Naples subway”, Proc. of the Institution of Civil Engineers: Geotechnical Eng., 166:3 (2013), 280–298 | DOI

[6] L. Y. Levin, M. A. Semin, A. V. Zaitsev, “Adjustment of Thermophysical Rock Mass Properties in Modeling Frozen Wall Formation in Mine Shafts under Construction”, J. Min. Sci., 55:1 (2019), 157–168 | DOI

[7] M. S. Zhelnin, O. A. Plekhov, M. A. Semin, L. Y. Levin, “Numerical solution for an inverse problem about determination of volumetric heat capacity of rock mass during artificial freezing”, PNRPU Mechanics Bulletin, 2017, no. 4, 56–75

[8] O. A. Dolgov, “Metodika rascheta protsessa zamorazhivaniia gornykh porod pri prokhodke stvolov shakht sposobom zamorazhivaniia na bolshuiu glubinu”, Zamorazhivanie gornykh porod pri prokhodke stvolov shakht, Izd-vo Akademii nauk SSSR, M., 1961, 9–64

[9] L. Y. Levin, M. A. Semin, A. V. Zaitsev, “Solution of an Inverse Stefan Problem in Analyzing the Freezing of Groundwater in a Rock Mass”, Journal of Engineering Physics and Thermophysics, 91:3 (2018), 611–618 | DOI

[10] O. M. Alifanov, Obratnye zadachi teploobmena, Mashinostroenie, M., 1988, 280 pp.

[11] A. N. Tikhonov, V. Y. Arsenin, Solutions of Ill-Posed Problems, Winston Sons, Washington, DC, 1977, 258 pp. | MR | Zbl

[12] N. L. Goldman, Obratnye zadachi Stefana. Teoriia i metody resheniia, Izd-vo MGU, M., 1999, 294 pp.

[13] D. Słota, “Direct and inverse one-phase Stefan problem solved by the variational iteration method”, Computers Mathematics with Applications, 54:7–8 (2007), 1139–1146 | MR

[14] P. Jochum, “The numerical solution of the inverse Stefan problem”, Numer. Mathematik, 34:4 (1980), 411–429 | DOI | MR | Zbl

[15] O. S. Parshakov, Razrabotka avtomatizirovannoi sistemy termometricheskogo kontrolia ledoporodnykh ograzhdenii, diss. kand. tekhn. nauk, Perm, 2020, 140 pp.

[16] G. H. Meyer, “Multidimensional Stefan problems”, SIAM Journal on Numerical Analysis, 10:3 (1973), 522–538 | DOI | MR | Zbl