Coupled simulation of gasdynamic and elastoplastic phenomena in a material under the action of an intensive energy flux
Matematičeskoe modelirovanie, Tome 33 (2021) no. 12, pp. 82-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complex computer model of thermomechanical phenomena and a method of end-to-end modeling of processes occurring in a solid material under the action of an of intense energy flux have been developed. The dynamics of nonlinear wave processes leading to internal fractures and spalling phenomena in material samples are discussed using the example of calculating the effect on a polymer material. These results can be used in studies of intensive energy flux actions in engineering practice, verify models of volumetric fractures and spallations in brittle solids, and validate wide-range equations of state.
Keywords: thermomechanical effects in solids, end-to-end calculation of gas-dynamic and elastoplastic waves, modeling of fractures and spalling.
@article{MM_2021_33_12_a5,
     author = {D. S. Boykov and O. G. Olkhovskaya and V. A. Gasilov},
     title = {Coupled simulation of gasdynamic and elastoplastic phenomena in a material under the action of an intensive energy flux},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {82--102},
     publisher = {mathdoc},
     volume = {33},
     number = {12},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_12_a5/}
}
TY  - JOUR
AU  - D. S. Boykov
AU  - O. G. Olkhovskaya
AU  - V. A. Gasilov
TI  - Coupled simulation of gasdynamic and elastoplastic phenomena in a material under the action of an intensive energy flux
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 82
EP  - 102
VL  - 33
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_12_a5/
LA  - ru
ID  - MM_2021_33_12_a5
ER  - 
%0 Journal Article
%A D. S. Boykov
%A O. G. Olkhovskaya
%A V. A. Gasilov
%T Coupled simulation of gasdynamic and elastoplastic phenomena in a material under the action of an intensive energy flux
%J Matematičeskoe modelirovanie
%D 2021
%P 82-102
%V 33
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_12_a5/
%G ru
%F MM_2021_33_12_a5
D. S. Boykov; O. G. Olkhovskaya; V. A. Gasilov. Coupled simulation of gasdynamic and elastoplastic phenomena in a material under the action of an intensive energy flux. Matematičeskoe modelirovanie, Tome 33 (2021) no. 12, pp. 82-102. http://geodesic.mathdoc.fr/item/MM_2021_33_12_a5/

[1] M. L. Kerber, Polymernye compositnye materyaly. Struktura. Svoistva. Tehnologii, Professiya, SPB., 2011, 560 pp.

[2] P. Linde, A. Schulz, W. Rust, “Influence of modelling and solution methods on the FE-simulation of the post-buckling behaviour of stiffened aircraft fuselage panels”, Composite Structures, 73:2 (2006), 229–236 | DOI

[3] I. M. Bulanov, V. V. Vorobei, Tekhnologiia raketnykh i aviakosmicheskikh konstruktsii iz kompozitsionnykh materialov, Uch. dlia vuzov, MGTU im. N.E. Baumana, M., 1998, 516 pp.

[4] H. M. Flower, C. Soutis, “Materials for airframes”, Aeronautical J., 107:1072 (2003), 331–341 | DOI

[5] Demidov B.A et al, “New method of the polymeric material properties experimental investigation under powerful energy flux impact”, J. of Physics: Conf. Series, 653:1 (2015), 012009 | DOI

[6] Novikov V. G., Solomiannaia A. D., Vichev I.Iu., Grushin A. S., THERMOS: Biblioteka funktsii dlia rascheta radiatsionnykh i termodinamicheskikh svoistv razlichnykh veshchestv i smesei v shirokoi oblasti temperatur i plotnostei, Svidetelstvo o gosudarstvennoi registratsii programmy dlia EVM; pravoobladatel IPM im. M.V. Keldysha RAN; No 2013616315; zaiavl. 27.05.2013; zareg. 03.07.2013

[7] R. M. More, K. H. Warren, D. A. Young, G. B. Zimmerman, “A new quotidian equation of state (QEOS) for hot dense matter”, Phys. Fluids, 31 (1988), 3059 | DOI | Zbl

[8] V. A. Gasilov, A. S. Grushin, A. S. Ermakov, O. G. Olkhovskaia, I. B. Petrov, “Simulation of the Destruction of Polymer Materials under the Action of Intense Energy Flows”, Math. Models Computer Simul., 11:2 (2019), 198–208 | DOI | Zbl

[9] L. I. Sedov, Mekhanika sploshnoi sredy, 2 izd, Nauka, M., 1973

[10] V. N. Bakulin, A. V. Ostrik, Kompleksnoe deistvie izluchenii i chastits na tonkostennye konstruktsii s geterogennymi pokrytiiami, Fizmatlit, M., 2015, 288 pp.

[11] A. V. Babkin, V. I. Kolpakov, V. N. Okhitin, V. V. Selivanov, Chislennye metody v zadachakh fiziki bystroprotekaiushchikh protsessov, uch. dlia vuzov, Prikladnaia mekhanika sploshnykh sred, 3, MGTU im. N.E. Baumana, M., 2006, 520 pp.

[12] Maenchen G., Sack S., “The TENSOR code”, Methods in Computational Physics, v. 3, Fundamental methods in Hydrodynamics, Academic Press, NY, 1964 | DOI

[13] W. Nowacki, Thermoelasticity, Second Ed., Pergamon, 1986 | DOI | Zbl

[14] Gasilov V. A., Bagdasarov G. A., Boldarev A. S., Diachenko S. V., Kartasheva E. L., Olkhovskaia O. G., Programmnyi kompleks MARPLE, Svidetelstvo o gosudarstvennoi registratsii programmy dlia EVM; pravoobladatel IPM im. M.V. Keldysha RAN; No 2012660911; zaiavl. 11.10.2012; zareg. 30.12.2012

[15] V. M. Gribanov, A. V. Ostrik, S. S. Slobodchikov, “Teplovoe i mekhanicheskoe deistvie rentgenovskogo izlucheniia na materialy i pregrady”, Fizika iadernogo vzryva, v. 2, Deistvie vzryva, MO RF TsFTI, M., 1997, 131–194, 256 pp.

[16] Petrov I. B. et al., “Combined grid-characteristic method for the numerical solution of three-dimensional dynamical elastoplastic problems”, Computational Math. and Mathematical Physics, 54:7 (2014), 1176–1189 | DOI | Zbl

[17] I. B. Petrov, “Volnovye i otkolnye iavleniia v sloistykh obolochkakh konechnoi tolshchiny”, Mekhanika tverdogo tela, 1986, no. 4, 118–124

[18] https://www.salome-platform.org/

[19] Iu. A. Poveshchenko, A. Iu. Krukovskii, D. S. Boikov, V. O. Podryga, P. I. Ragimli, “Trekhmernoe modelirovanie gidrodinamicheskikh zadach s uchetom uprugikh protsessov”, Keldysh Institute preprints, 2021, 030, 15 pp. | Zbl

[20] S. S. Ananyev, G. A. Bagdasarov, S. A. Dan-ko, B. A. Demidov, E. D. Kazakov, Y. G. Kalinin, A. A. Kurilo, O. G. Ol'khovskaya, M. G. Strizhakov, V. A. Gasilov, S. I. Tkachenko, “Study of the Anode Plasma Dynamics Under the Action of a High-Power Electron Beam on Epoxy Resin”, Plasma Physics Reports, 43:7 (2017), 726–732 | DOI

[21] V. A. Egorova, F. N. Voronin, M. E. Zhukovskii, M. B. Markov, A. I. Potapenko, R. V. Uskov, D. S. Boikov, “Model of Radiation-Induced Thermomechanical Effects in Heterogeneous Finely Dispersed Materials”, Mathematical Models and Computer Simulations, 12:5 (2020), 729–739 | DOI | Zbl

[22] I. P. Tsygvintsev, A. Iu. Krukovskii, Iu. A. Poveshchenko, V. A. Gasilov, D. S. Boikov, S. B. Popov, “Odnorodnye raznostnye skhemy dlia sopriazhennykh zadach gidrodinamiki i uprugosti”, Uchenye zapiski Kazanskogo universiteta. Seriia: Fiziko-matematicheskie nauki, 161, no. 3 (2019), 377–392

[23] Iu. A. Poveshchenko, V. A. Gasilov, V. O. Podryga, M. E. Ladonkina, A. S. Voloshin, D. S. Boikov, K. A. Beklemysheva, “Difference Schemes of Consistent Approximation of the Stress-Strain State and Energy Balance of a Medium”, Mathematical Models Computer Simulations, 12:2 (2020), 99–109 | DOI

[24] Demidov B. A., Ivkin M. V., Petrov V. A., Efremov V. P., Meshcheryakov A. N., “Dynamics of interaction of a high-current electron beam with polymeric materials”, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2:4 (2008), 631–636 | DOI

[25] B. A. Demidov, V. A. Petrov, V. P. Efremov, A. N. Mescheryakov, “Dynamics of bulk destruction of transparent dielectric polymeric materials under a pulsed high-energy electron beam”, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 3:5 (2009), 673–677 | DOI