Analysis of genetic code properties by mathematical simulation
Matematičeskoe modelirovanie, Tome 32 (2020) no. 9, pp. 131-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider random changes in the standard genetic code, under which its structure is preserved, as well as small variations of the genetic code in which the structure is preserved or changed. It justifies the assumption that the standard genetic code in the best way provides the possibility of gene overlap. The structure and content of the standard genetic code is determined by the condition of the maximum total number of allowable substitutions that open the closed reading frames and the minimal closed reading frames for which there is no such replacement. The estimated probability of a random selection of a standard genetic code from the point of view of this criterion, depending on the model of a numerical experiment, is of the order of $10^{-3}$ to $10^{-6}$.
Keywords: genetic code, overlapping genes.
@article{MM_2020_32_9_a8,
     author = {N. N. Kozlov and E. I. Kugushev and T. M. Eneev},
     title = {Analysis of genetic code properties by mathematical simulation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {131--144},
     publisher = {mathdoc},
     volume = {32},
     number = {9},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_9_a8/}
}
TY  - JOUR
AU  - N. N. Kozlov
AU  - E. I. Kugushev
AU  - T. M. Eneev
TI  - Analysis of genetic code properties by mathematical simulation
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 131
EP  - 144
VL  - 32
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_9_a8/
LA  - ru
ID  - MM_2020_32_9_a8
ER  - 
%0 Journal Article
%A N. N. Kozlov
%A E. I. Kugushev
%A T. M. Eneev
%T Analysis of genetic code properties by mathematical simulation
%J Matematičeskoe modelirovanie
%D 2020
%P 131-144
%V 32
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_9_a8/
%G ru
%F MM_2020_32_9_a8
N. N. Kozlov; E. I. Kugushev; T. M. Eneev. Analysis of genetic code properties by mathematical simulation. Matematičeskoe modelirovanie, Tome 32 (2020) no. 9, pp. 131-144. http://geodesic.mathdoc.fr/item/MM_2020_32_9_a8/

[1] N. Kozlov, Geneticheskii kod: vzgliad matematika, Monografiia, Palmarium Acad. Publ., Saarbrucken, 2014, 336 pp.

[2] N. N. Kozlov, T. M. Eneev, “Fundamentals of a mathematical theory of genetic codes”, Doklady Mathematics, 95:2 (2017), 144–146 | MR | Zbl

[3] N. N. Kozlov, E. I. Kugushev, T. M. Eneev, “Genetic code potential for overlaps of six and three genes”, Doklady Mathematics, 95:2 (2017), 161–163 | MR | Zbl

[4] D. L. Nelson, M. M. Cox, Lehninger Principles of Biochemistry, 5th Edition, W.H. Freeman and Company, New York, 2008, 1294 pp.

[5] N. N. Kozlov, E. I. Kugushev, T. M. Eneev, “Numerical Characteristics of the Genetic Code for the Possibility of Overlapping Genes”, Doklady Mathematics, 98:2 (2018), 439–443 | MR | Zbl

[6] N. N. Kozlov, “On the question of the genetic code arbitrariness “choice””, Doklady Biophysics, 367–369 (1999), 112–114

[7] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular biology of the cell, 4th ed., Garland Science, New York, 2002, 712 pp.