Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_9_a8, author = {N. N. Kozlov and E. I. Kugushev and T. M. Eneev}, title = {Analysis of genetic code properties by mathematical simulation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {131--144}, publisher = {mathdoc}, volume = {32}, number = {9}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_9_a8/} }
TY - JOUR AU - N. N. Kozlov AU - E. I. Kugushev AU - T. M. Eneev TI - Analysis of genetic code properties by mathematical simulation JO - Matematičeskoe modelirovanie PY - 2020 SP - 131 EP - 144 VL - 32 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_9_a8/ LA - ru ID - MM_2020_32_9_a8 ER -
N. N. Kozlov; E. I. Kugushev; T. M. Eneev. Analysis of genetic code properties by mathematical simulation. Matematičeskoe modelirovanie, Tome 32 (2020) no. 9, pp. 131-144. http://geodesic.mathdoc.fr/item/MM_2020_32_9_a8/
[1] N. Kozlov, Geneticheskii kod: vzgliad matematika, Monografiia, Palmarium Acad. Publ., Saarbrucken, 2014, 336 pp.
[2] N. N. Kozlov, T. M. Eneev, “Fundamentals of a mathematical theory of genetic codes”, Doklady Mathematics, 95:2 (2017), 144–146 | MR | Zbl
[3] N. N. Kozlov, E. I. Kugushev, T. M. Eneev, “Genetic code potential for overlaps of six and three genes”, Doklady Mathematics, 95:2 (2017), 161–163 | MR | Zbl
[4] D. L. Nelson, M. M. Cox, Lehninger Principles of Biochemistry, 5th Edition, W.H. Freeman and Company, New York, 2008, 1294 pp.
[5] N. N. Kozlov, E. I. Kugushev, T. M. Eneev, “Numerical Characteristics of the Genetic Code for the Possibility of Overlapping Genes”, Doklady Mathematics, 98:2 (2018), 439–443 | MR | Zbl
[6] N. N. Kozlov, “On the question of the genetic code arbitrariness “choice””, Doklady Biophysics, 367–369 (1999), 112–114
[7] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular biology of the cell, 4th ed., Garland Science, New York, 2002, 712 pp.