Testing the kinetic-hydrodynamic model by calculating a flow above an absorbing surface
Matematičeskoe modelirovanie, Tome 32 (2020) no. 9, pp. 103-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of flow around a thin plate of infinite magnitude installed across the flow is considered. The frontal surface of the plate absorbs gas. For calculations, we used a mathematical flow model containing a combination of the Navier–Stokes–Fourier model and the model kinetic equation of polyatomic gases. The calculations were performed for a supersonic flow with a Mach number of 2.31 for a Knudsen number of 0.1 ... 0.001 and a plate surface absorption coefficient from 0 to 1. The obtained flow fields were compared with solutions of the model kinetic equation of polyatomic gases. The drag coefficient of the plate was compared with known literature data. For all considered flow parameters, a satisfactory agreement is obtained with the known data. It is shown that there are no gaps in the derivatives of gas-dynamic parameters in the cross-linking region of the kinetic and hydrodynamic components of the model. The increase in the computational efficiency of the model with respect to the solutions of model kinetic equations is estimated. The conclusion is drawn on the suitability of the considered kinetic-hydrodynamic model for describing highly nonequilibrium flows.
Keywords: polyatomic gases, Navier–Stokes–Fourier model, model kinetic equation, combined model, dynamic nonequilibrium, absorbing surface.
@article{MM_2020_32_9_a6,
     author = {Ju. A. Nikitchenko and A. V. Tikhonovets},
     title = {Testing the kinetic-hydrodynamic model by calculating a flow above an absorbing surface},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {103--118},
     publisher = {mathdoc},
     volume = {32},
     number = {9},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_9_a6/}
}
TY  - JOUR
AU  - Ju. A. Nikitchenko
AU  - A. V. Tikhonovets
TI  - Testing the kinetic-hydrodynamic model by calculating a flow above an absorbing surface
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 103
EP  - 118
VL  - 32
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_9_a6/
LA  - ru
ID  - MM_2020_32_9_a6
ER  - 
%0 Journal Article
%A Ju. A. Nikitchenko
%A A. V. Tikhonovets
%T Testing the kinetic-hydrodynamic model by calculating a flow above an absorbing surface
%J Matematičeskoe modelirovanie
%D 2020
%P 103-118
%V 32
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_9_a6/
%G ru
%F MM_2020_32_9_a6
Ju. A. Nikitchenko; A. V. Tikhonovets. Testing the kinetic-hydrodynamic model by calculating a flow above an absorbing surface. Matematičeskoe modelirovanie, Tome 32 (2020) no. 9, pp. 103-118. http://geodesic.mathdoc.fr/item/MM_2020_32_9_a6/

[1] G. Salbreux, F. Jülicher, “Mechanics of active surfaces”, Phys. Rev., E 96 (2017), 032404

[2] Ran Wei Rioux, The Rate of Fluid Absorption in Porous Media, Electronic Theses and Dissertations, 2003, 234 pp.

[3] R. G. Barantsev, Vzaimodeistvie razrezhennykh gazov s obtekaemymi poverkhnostiami, Nauka, M., 1975, 343 pp.

[4] Ju. A. Ryzhov, U. G. Pirumov, V. N. Gorbunov, Nonequilibrium Condensation in High-Speed Gas Flows, Gordon and Breach Science Publishers, 1989, 290 pp.

[5] Ju. A. Nikitchenko, S. A. Popov, A. V. Tikhonovets, “Combined Kinetic-Hydrodynamic Model of Polyatomic Gas Flow”, MM CS, 11:5 (2019), 740–749 | MR | MR | Zbl

[6] Y. Nikitchenko, S. Popov, A. Tikhonovets, “Special Aspects of Hybrid Kinetic-Hydrodynamic Model When Describing the Shape of Shockwaves”, ICCS 2019, Lecture Notes in Computer Science, 11539, eds. Rodrigues J. et al., Springer, Cham | MR

[7] V. S. Glinkina, Yu. A. Nikitchenko, S. A. Popov, Yu. A. Ryzhov, “Drag Coefficient of an Absorbing Plate Set Transverse to a Flow”, Fluid Dynamics, 51:6 (2016), 791–798 | MR | Zbl

[8] Yu. A. Nikitchenko, “Model Kinetic Equation for Polyatomic Gases”, Comp. Math. and Math. Phys., 57:11 (2017), 1843–1855 | MR | Zbl

[9] M. J. Thompson, An Introduction to Astrophysical Fluid Dynamics, Imperial College Press, London, 2006 | MR | Zbl

[10] O. I. Rovenskaya, G. Croce, “Numerical simulation of gas flow in rough micro channels: hybrid kinetic-continuum approach versus Navier–Stokes”, Microfluid Nanofluid, 20:81 (2016)

[11] E. N. Bondarev, V. T. Dubasov, Iu. A. Ryzhov, S. B. Svirshchevskii, N. V. Semenchikov, Aerogidromekhanika, Mashinostroenie, M., 1993, 608 pp.