Stationary “von Karman” vortex structures in the magnetohydrodynamical flows of rotating incompressible polymeric liquid
Matematičeskoe modelirovanie, Tome 32 (2020) no. 7, pp. 3-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the steady-state solutions for the problem of magnetohydrodyamical flow of incompressible polymeric liquid above the infinite flat disc. In the paper we are looking for the solutions similar to the von Karman self-similar solutions for the viscous liquid. We intoduce the examples of the numerical steady-state solutions for the various values of problem parameters.
Keywords: rheological model, rotating motion, magnetohydrodynamics, steady-state solutions.
@article{MM_2020_32_7_a0,
     author = {A. M. Blokhin and R. E. Semenko},
     title = {Stationary {\textquotedblleft}von {Karman{\textquotedblright}} vortex structures in the magnetohydrodynamical flows of rotating incompressible polymeric liquid},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--23},
     publisher = {mathdoc},
     volume = {32},
     number = {7},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_7_a0/}
}
TY  - JOUR
AU  - A. M. Blokhin
AU  - R. E. Semenko
TI  - Stationary “von Karman” vortex structures in the magnetohydrodynamical flows of rotating incompressible polymeric liquid
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 3
EP  - 23
VL  - 32
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_7_a0/
LA  - ru
ID  - MM_2020_32_7_a0
ER  - 
%0 Journal Article
%A A. M. Blokhin
%A R. E. Semenko
%T Stationary “von Karman” vortex structures in the magnetohydrodynamical flows of rotating incompressible polymeric liquid
%J Matematičeskoe modelirovanie
%D 2020
%P 3-23
%V 32
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_7_a0/
%G ru
%F MM_2020_32_7_a0
A. M. Blokhin; R. E. Semenko. Stationary “von Karman” vortex structures in the magnetohydrodynamical flows of rotating incompressible polymeric liquid. Matematičeskoe modelirovanie, Tome 32 (2020) no. 7, pp. 3-23. http://geodesic.mathdoc.fr/item/MM_2020_32_7_a0/

[1] R. Ellahi, “The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions”, Appl. Math. Model., 37:3 (2013), 1451–1467 | DOI | MR | Zbl

[2] Z. Khan, M. A. Khan, N. Siddiqui et al., “Solution of magnetohydrodynamic flow and heat transfer of radiative viscoelastic fluid with temperature dependent viscosity in wire coating analysis”, PLOS One, 13:3 (2018), 1–16 | MR

[3] T. Gul, S. Islam, R. A. Shah et al, “Unsteady MHD thin film flow of an Oldroyd-B fluid over an oscillating inclined belt”, PLOS One, 10:7 (2015), 1–18 | MR

[4] L. Lie, L. Zhang, “Axial MHD flow of generalized Oldroyd-B fluid due to two oscillating cylinders”, Adv. mat. res., 354:1 (2012), 83–86

[5] I. Khan, K. Fakhar, M. I. Anwar, “Hydro-magnetic Rotating Flows of an Oldroyd-B Fluid in a Porous Medium”, Sp. Top. and Rev. in Por. Med., 3:1 (2012), 89–95

[6] A. M. Blokhin, R. E. Semenko, “Stationary magnetohydrodynamical flows of non-isothermal polymeric liquid in the flat channel”, Bullet. of the South Ural State Univ., Ser: Math. Model., Program. and Comput. Softw., 11:4, 41–54 | MR | Zbl

[7] Iu. A. Altukhov, A. S. Gusev, G. V. Pyshnograi, Vvedenie v mezoskopicheskuiu teoriiu tekuchikh polimernykh sistem, AltGPA, Barnaul, 2012, 122 pp.

[8] T. von Karman, “Über laminare und turbulente Reibung”, ZAMM, 1:4 (1921), 233–252 | Zbl

[9] H. Greenspan, The theory of rotating fluids, Cambr. Univ. Press, Cambridge, 1968, 327 pp. | MR | Zbl

[10] K. Stewartson, “On the flow between two rotating coaxial discs”, Proc. Cambridge Phil. Soc., 49:2 (1953), 333–341 | DOI | MR | Zbl

[11] S. V. Kostrykin, A. A. Khapaev, I. G. Yakushkin, “Vortex patterns in quasi-two-dimensional flows of a viscous rotating fluid”, J. Exp. Theor. Phys., 112:2 (2011), 344–354

[12] S. V. Kostrykin, “Steady flow regimes in the problem of intense wind-driven circulation in a thin layer of viscous rotating fluid”, J. Exp. Theor. Phys., 127:1 (2018), 167–177

[13] A. B. Vatazhin, G. A. Liubimov, S. A. Regiger, Magnitogidrodinamicheskie techeniia v kanalakh, Nauka, M., 1970, 674 pp.

[14] C. Nordling, J. Osterman, Physics handbook for science and engineering, Prof. Publ. House, 2006, 503 pp.

[15] S. G. Kalashnikov, Elektrichestvo, Fizmatlit, M., 2003, 624 pp.

[16] R. Bird, R. Armstrong, O. Hassager, Dynamics of polymeric liquids, Wiley, York, 1987, 649 pp. | MR

[17] M. Doi, S. Edwards, The theory of polymer dynamics, Clarendon press, Oxford, 1986, 391 pp.

[18] N. V. Bambaeva, A. M. Blokhin, “Stationary solutions of equations of incompressible viscoelastic polymer liquid”, Comp. Math. and Math. Phys., 54:5 (2014), 874–899 | MR | Zbl

[19] A. M. Blokhin, A. S. Rudometova, “Stationary flows of a weakly conducting in-compressible polymeric liquid between coaxial cylinders”, J. of Appl. and Industr. Math., 11:4 (2017), 486–493 | DOI | MR | Zbl

[20] A. M. Blokhin, R. E. Semenko, “Vortex motion of an incompressible polymer liquid in the cylindrical near-axial zone”, Fluid dyn., 53:2 (2018), 177–188 | MR | Zbl

[21] L.I. Sedov, A course in continuum mechanics, v. 1, Wolters-Noordhoff Publ., Groningen, 1972, 309 pp.

[22] L. G. Loitsianskii, Mekhanika zhidkosti i gaza, Nauka, M., 1978, 677 pp.

[23] Shih-i Pai, Introduction to the theory of compressible flow, D. Van Nostrand Co., Princeton, 1959, 385 pp. | MR | Zbl

[24] A. M. Blokhin, R. E. Semenko, “Stationary electrohydrodynamic flows of incomp-ressible polymeric media with strong discontinuity”, J. of Math. Sci., 231:2 (2018), 143–152 | DOI | MR | Zbl