Les-based computation of evolution of turbulent wakes subjected to adverse pressure gradient
Matematičeskoe modelirovanie, Tome 32 (2020) no. 6, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

Results are presented of scale-resolving computations of mean and turbulent (including the dissipation rate of turbulent kinetic energy) characteristics of the turbulent wake of a flat plate subjected to Adverse Pressure Gradient (APG). The computations are performed in the framework of a zonal RANS-LES model for two configurations. In the first one, APG is created by a plane symmetric diffuser and in the second one by a system of two pairs of thin liner foils specially designed for this purpose. In the both cases a volumetric synthetic turbulence generator is used for creating turbulent content at the inlet of LES sub-domain. High accuracy of results of the simulations is supported by their weak sensitivity to grid-refinement. Obtained detailed data on the wakes’ characteristics may be used for validation and improvement of RANS turbulence models as applied to the considered class of flows.
Keywords: turbulent wake behind flat plate, unfavorable pressure gradient
Mots-clés : zonal RANS-LES computations.
@article{MM_2020_32_6_a0,
     author = {E. K. Guseva and M. Kh. Strelets and A. K. Travin and M. L. Shur},
     title = {Les-based computation of evolution of turbulent wakes subjected to adverse pressure gradient},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {32},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_6_a0/}
}
TY  - JOUR
AU  - E. K. Guseva
AU  - M. Kh. Strelets
AU  - A. K. Travin
AU  - M. L. Shur
TI  - Les-based computation of evolution of turbulent wakes subjected to adverse pressure gradient
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 3
EP  - 20
VL  - 32
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_6_a0/
LA  - ru
ID  - MM_2020_32_6_a0
ER  - 
%0 Journal Article
%A E. K. Guseva
%A M. Kh. Strelets
%A A. K. Travin
%A M. L. Shur
%T Les-based computation of evolution of turbulent wakes subjected to adverse pressure gradient
%J Matematičeskoe modelirovanie
%D 2020
%P 3-20
%V 32
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_6_a0/
%G ru
%F MM_2020_32_6_a0
E. K. Guseva; M. Kh. Strelets; A. K. Travin; M. L. Shur. Les-based computation of evolution of turbulent wakes subjected to adverse pressure gradient. Matematičeskoe modelirovanie, Tome 32 (2020) no. 6, pp. 3-20. http://geodesic.mathdoc.fr/item/MM_2020_32_6_a0/

[1] C. L. Rumsey, J. P. Slotnick, A. J. Sclafani, Overview and Summary of the Third AIAA High Lift Prediction Workshop, AIAA Paper, AIAA-2018-1258

[2] D. M. Driver, G. G. Mateer, “Wake flow in adverse pressure gradient”, International Journal of Heat and Fluid Flow, 23:5 (2002), 564–571 | DOI

[3] M. J. Tummers, K. Hanjalic, D. M. Passchier, R. A.W. M. Henkes, “Computations of a turbulent wake in a strong adverse pressure gradient”, International Journal of Heat and Fluid Flow, 28:3 (2007), 418–428 | DOI

[4] M. L. Shur, P. R. Spalart, M. Kh. Strelets, A. K. Travin, “A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities”, International Journal of Heat and Fluid Flow, 29 (2008), 1638–1649 | DOI

[5] M. Shur, M. Strelets, A. Travin et al., “Improved embedded approaches”, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 134 (2017), 51–87 | DOI

[6] F. R. Menter, “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications”, AIAA Journal, 32:8 (1994), 1598–1605 | DOI

[7] W. Breitenstein, P. Scholz, R. Radespiel et al, A Wind Tunnel Experiment for Symmetric Wakes in Adverse Pressure Gradients, AIAA Paper, AIAA-2019-1875

[8] M. Shur, M. Strelets, A. Travin, “High-order implicit multi-block Navier-Stokes code: Ten-years experience of application to RANS/DES/LES/DNS of turbulent flows”, 7th Symposium on Overset Composite Grids and Solution Technology, Invited Lecture (Huntington Beach, CA, Oct. 2004) http://cfd.spbstu.ru/agarbaruk/c/document_library/DLFE-42505.pdf

[9] S. E. Rogers, D. Kwak, “An Upwind Differencing Scheme for the Time Accurate Incom-pressible Navier-Stokes Equations”, AIAA Journal, 28:2 (1990), 253–262 | DOI | MR | Zbl

[10] A. Dejoan, M. A. Leschziner, “Large eddy simulation of a plane turbulent wall jet”, Phys. Fluids, 17 (2005), 025102 | DOI | Zbl