Modeling of thin fiber deformation and destruction under dynamic load
Matematičeskoe modelirovanie, Tome 32 (2020) no. 5, pp. 95-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the propagation of deformations and stresses in a thin fiber under the dynamic mechanical load is considered, as well as the destruction of the fiber. High-speed interactions are considered, for which the striker speed is comparable to the sound speed in the fiber. The numerical results are compared with an analytical solution for a point impact. Various loading modes are calculated for a distributed load, that cause significantly different types of deformation and destruction of the fiber.
Keywords: numerical simulation, thin fiber, dynamic load
Mots-clés : destruction.
@article{MM_2020_32_5_a4,
     author = {A. V. Vasyukov and M. A. Elovenkova and I. B. Petrov},
     title = {Modeling of thin fiber deformation and destruction under dynamic load},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {95--102},
     publisher = {mathdoc},
     volume = {32},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_5_a4/}
}
TY  - JOUR
AU  - A. V. Vasyukov
AU  - M. A. Elovenkova
AU  - I. B. Petrov
TI  - Modeling of thin fiber deformation and destruction under dynamic load
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 95
EP  - 102
VL  - 32
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_5_a4/
LA  - ru
ID  - MM_2020_32_5_a4
ER  - 
%0 Journal Article
%A A. V. Vasyukov
%A M. A. Elovenkova
%A I. B. Petrov
%T Modeling of thin fiber deformation and destruction under dynamic load
%J Matematičeskoe modelirovanie
%D 2020
%P 95-102
%V 32
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_5_a4/
%G ru
%F MM_2020_32_5_a4
A. V. Vasyukov; M. A. Elovenkova; I. B. Petrov. Modeling of thin fiber deformation and destruction under dynamic load. Matematičeskoe modelirovanie, Tome 32 (2020) no. 5, pp. 95-102. http://geodesic.mathdoc.fr/item/MM_2020_32_5_a4/

[1] I. F. Kobylkin, V. V. Selivanov, Materialy i struktury legkoy bronezashchity, MGTU im. N.E. Baumana, M., 2014, 192 pp.

[2] J. D. Walker, “Constitutive Model for Fabrics with Explicit Static Solution and Ballistic Limit”, Proc. of Eighteenth Intern. Symp. on Ballistics (1999, San Ant., USA), 1231–1238

[3] J. D. Walker, “Ballistic Limit of Fabrics with Resin”, Proc. of the Nineteenth International Symposium on Ballistics (2001, Interlaken, Switzerland), 1409–1414

[4] P. K. Porval, S. L. Phoenix, “Modeling System Effects in Ballistic Impact into Multi-layered Fibrous Materials for Soft Body Armor”, Intern. J. of Fracture, 135 (2005), 217–249 | DOI

[5] Kh. A. Rakhmatulin, Iu. A. Demianov, Prochnost pri intensivnykh dinamicheskikh nagruzkakh, Logos, M., 2009, 512 pp. | MR

[6] Kh. A. Rakhmatulin, E. I. Shemiakin, Iu. A. Demianov, A. V. Zviagin, Prochnost i razrushenie pri kratkovremennykh nagruzkakh, Logos, M., 2008, 624 pp.

[7] I. B. Petrov, A. I. Lobanov, Lektsii to vychislitelnoj matematike, Binom, M., 2006, 523 pp.