Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_5_a1, author = {V. G. Zadorozhniy and M. E. Semenov and N. I. Sel'vesyuk and I. I. Ulshin and V. S. Nozhkin}, title = {Statistical characteristics of solutions of the system of the stochastic transfer model}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {21--43}, publisher = {mathdoc}, volume = {32}, number = {5}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_5_a1/} }
TY - JOUR AU - V. G. Zadorozhniy AU - M. E. Semenov AU - N. I. Sel'vesyuk AU - I. I. Ulshin AU - V. S. Nozhkin TI - Statistical characteristics of solutions of the system of the stochastic transfer model JO - Matematičeskoe modelirovanie PY - 2020 SP - 21 EP - 43 VL - 32 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_5_a1/ LA - ru ID - MM_2020_32_5_a1 ER -
%0 Journal Article %A V. G. Zadorozhniy %A M. E. Semenov %A N. I. Sel'vesyuk %A I. I. Ulshin %A V. S. Nozhkin %T Statistical characteristics of solutions of the system of the stochastic transfer model %J Matematičeskoe modelirovanie %D 2020 %P 21-43 %V 32 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2020_32_5_a1/ %G ru %F MM_2020_32_5_a1
V. G. Zadorozhniy; M. E. Semenov; N. I. Sel'vesyuk; I. I. Ulshin; V. S. Nozhkin. Statistical characteristics of solutions of the system of the stochastic transfer model. Matematičeskoe modelirovanie, Tome 32 (2020) no. 5, pp. 21-43. http://geodesic.mathdoc.fr/item/MM_2020_32_5_a1/
[1] M. L. Salby, Fundamentals of Atmospheric Physics, Academic Press, NY, 1996, 376 pp.
[2] M. A. Tolstykh, “Globalnye modeli atmosfery: sovremennoe sostoianie i perspektivy razvitiia”, Trudy GNITS Rossiiskoi Federatsii, 2016, no. 359, 5–32
[3] Gidromettsentr Rossii (Data obrashcheniia: 13.05.2019)
[4] E. N. Lorenz, “Deterministic nonperiodic flow”, Journal of the atmospheric sciences, 20 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[5] A. N. Bagrov, “Operativnaia chislennaia skhema prognoza konvektivnykh iavlenii (kuchevoobraznoi oblachnosti, livnei, groz i shkvalov) i oblozhnykh osadkov”, Trudy GMTS, 1972, no. 91, 29–38
[6] B. D. Uspenskii, “Kolichestvennyi prognoz oblozhnykh i livnevych osadkov”, Meteorologiia i gidrologiia, 1970, no. 1, 11–18
[7] V. G. Zadorozhniy, “Stabilization of Linear Systems by a Multiplicative Random Noise”, Differential Equations, 54:6 (2018), 728–747 | DOI | DOI | MR | Zbl
[8] V. G. Zadorozhnii, Metody variatsionnogo analiza, RKHD, M.–Izhevsk, 2006, 316 pp.
[9] V. G. Zadorozhniy, “Linear chaotic resonance in vortex motion”, Comp. Math. Math. Phys., 53:4 (2013), 486–502 | DOI | MR | Zbl
[10] P. G. Friik, Turbulentnost: Podkhody i modeli, IKI, M.–Igevsk, 2003, 291 pp.
[11] B. Oksendal, Stochastic differential equations, Springer, Berlin, 2003, 379 pp. | MR | Zbl
[12] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, 6-e izd., ispravl., Nauka, M., 1989, 624 pp. | MR
[13] G. E. Shilov, Matematicheskii analiz. Vtoroi spetsialnyi kurs, Nauka, M., 1965, 328 pp.
[14] V. S. Nozhkin et al, “Stochastic model of moisture motion in atmosphere”, Journal of Physics: Conference Series, 1096 (2018), 012167 | DOI
[15] V. S. Vladimirov, Generalized functions in mathematical physics, Mir Publishers, 1979, 390 pp.