Balance\ finite difference schemes for the equations of the parabolic type
Matematičeskoe modelirovanie, Tome 32 (2020) no. 4, pp. 94-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new numerical algorithm for solving parabolic equations by means of balance difference schemes is proposed. The balance schemes are combining the advantages of conservative and characteristic schemes. The main advantage of the new algorithm is that it is explicit and is implemented on the most compact computational template in one space-time computational cell. It scales perfectly and is extremely economical in software systems that implement the CABARET scheme because it uses the existing data structure there.
Mots-clés : parabolic type equations, CABARET scheme.
Keywords: balance&characteristic difference schemes, hyperbolization
@article{MM_2020_32_4_a6,
     author = {V. Y. Glotov and V. M. Goloviznin and B. N. Chetverushkin},
     title = {Balance\&characteristic finite difference schemes for the equations of the parabolic type},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {94--106},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_4_a6/}
}
TY  - JOUR
AU  - V. Y. Glotov
AU  - V. M. Goloviznin
AU  - B. N. Chetverushkin
TI  - Balance\&characteristic finite difference schemes for the equations of the parabolic type
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 94
EP  - 106
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_4_a6/
LA  - ru
ID  - MM_2020_32_4_a6
ER  - 
%0 Journal Article
%A V. Y. Glotov
%A V. M. Goloviznin
%A B. N. Chetverushkin
%T Balance\&characteristic finite difference schemes for the equations of the parabolic type
%J Matematičeskoe modelirovanie
%D 2020
%P 94-106
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_4_a6/
%G ru
%F MM_2020_32_4_a6
V. Y. Glotov; V. M. Goloviznin; B. N. Chetverushkin. Balance\&characteristic finite difference schemes for the equations of the parabolic type. Matematičeskoe modelirovanie, Tome 32 (2020) no. 4, pp. 94-106. http://geodesic.mathdoc.fr/item/MM_2020_32_4_a6/

[1] V. M. Goloviznin, I. A. Korotkin, S. A. Finogenov, “Modelirovanie turbulentnoi estestvennoi konvektsii v zamknutykh vytianutykh po vysote oblastiakh”, Vychislitelnaia mekhanika sploshnykh sred, 9:3 (2016), 253–263

[2] V. Iu. Glotov, V. M. Goloviznin, K. M. Sergeenko, “LES-modelirovanie turbulentnogo teploobmena pri techenii svintsovogo teplonositelia v krugloi trube pri razlichnykh chislakh Reinoldsa”, Matematicheskoe modelirovanie, 30:7 (2018), 46–53

[3] D. G. Asfandiyarov, V. M. Goloviznin, S. A. Finogenov, “Parameter-free method for computing the turbulent flow in a plane channel in a wide range of Reynolds numbers”, Computational Mathematics and Mathematical Physics, 55:9 (2015), 1515–1526 | DOI | MR | Zbl

[4] S. I. Repin, B. N. Chetverushkin, “Estimates of the difference between approximate solutions of the cauchy problems for the parabolic diffusion equation and a hyperbolic equation with a small parameter”, Doklady Mathematics, 88:1 (2013), 417–420 | DOI | MR | Zbl

[5] V. M. Goloviznin, B. N. Chetverushkin, “New generation algorithms for computational fluid dynamics”, Comput. Mathem. and Mathem. Physics, 58:8 (2018), 1217–1225 | DOI | MR | Zbl

[6] V. M. Goloviznin, M. A. Zaitsev, S. A. Karabasov, I. A. Korotkin, Novye algoritmy vychislitelnoi gidrodinamiki dlia mnogoprotsessornykh vychislitelnykh sistem, Izdatelstvo Moskovskogo universiteta, M., 2013, 467 pp.