About modeling a layered viscous conductive fluid flow in a region changing in time
Matematičeskoe modelirovanie, Tome 32 (2020) no. 4, pp. 31-42

Voir la notice de l'article provenant de la source Math-Net.Ru

The flow of a viscous conductive incompressible fluid in a time-varying region is investigated. Based on the model of a layered fluid flow, a class of exact solutions of the equations of magnetohydrodynamics in the region moving in time is considered. We study the change in the structure of a fluid flow as a result of a volume effect by a magnetic field and the movement of the boundary of the flow region. Heat dissipation effect due to internal friction and Joule heating is considered. The presented results are relevant in connection with the study of optimization problems of controlling the dynamics of an incompressible fluid and the creation of the domestic technology “digital field”.
Keywords: layer flow, variable flow, magnetic hydrodynamics.
@article{MM_2020_32_4_a2,
     author = {V. A. Galkin and A. O. Dubovik},
     title = {About modeling a layered viscous conductive fluid flow in a region changing in time},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {31--42},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_4_a2/}
}
TY  - JOUR
AU  - V. A. Galkin
AU  - A. O. Dubovik
TI  - About modeling a layered viscous conductive fluid flow in a region changing in time
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 31
EP  - 42
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_4_a2/
LA  - ru
ID  - MM_2020_32_4_a2
ER  - 
%0 Journal Article
%A V. A. Galkin
%A A. O. Dubovik
%T About modeling a layered viscous conductive fluid flow in a region changing in time
%J Matematičeskoe modelirovanie
%D 2020
%P 31-42
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_4_a2/
%G ru
%F MM_2020_32_4_a2
V. A. Galkin; A. O. Dubovik. About modeling a layered viscous conductive fluid flow in a region changing in time. Matematičeskoe modelirovanie, Tome 32 (2020) no. 4, pp. 31-42. http://geodesic.mathdoc.fr/item/MM_2020_32_4_a2/