Implementation of the iterative algorithm for numerical solution of 2D magnetogasdynamics problems
Matematičeskoe modelirovanie, Tome 32 (2020) no. 1, pp. 50-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an algorithm of making a numerical solution to the equations of magnetic gas dynamics (MHD), approximated by a completely conservative Eulerian-Lagrangian difference scheme (PCRS). The governing system describing a high-temperature matter dynamics is solved taking into account the conductive (electron, ion) and radiative heat transfer. The scheme is implicit for the calculations related to the “Lagrangian” moving grid, and the corresponding difference equations are solved by an iterative method with a consistent account of physical processes. We consider various combinations of difference equations grouped according to physical processes. The convergence criteria for the studied iteration process are obtained and validated through numerical experiments with model and application problems.
Keywords: magnetic gas dynamics, plasma dynamics, Z-pinch, implicit completely conservative difference scheme, iterative method.
@article{MM_2020_32_1_a3,
     author = {A. Yu. Krukovskiy and V. A. Gasilov and Yu. A. Poveschenko and Yu. S. Sharova and L. V. Klochkova},
     title = {Implementation of the iterative algorithm for numerical solution of {2D} magnetogasdynamics problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {50--70},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_1_a3/}
}
TY  - JOUR
AU  - A. Yu. Krukovskiy
AU  - V. A. Gasilov
AU  - Yu. A. Poveschenko
AU  - Yu. S. Sharova
AU  - L. V. Klochkova
TI  - Implementation of the iterative algorithm for numerical solution of 2D magnetogasdynamics problems
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 50
EP  - 70
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_1_a3/
LA  - ru
ID  - MM_2020_32_1_a3
ER  - 
%0 Journal Article
%A A. Yu. Krukovskiy
%A V. A. Gasilov
%A Yu. A. Poveschenko
%A Yu. S. Sharova
%A L. V. Klochkova
%T Implementation of the iterative algorithm for numerical solution of 2D magnetogasdynamics problems
%J Matematičeskoe modelirovanie
%D 2020
%P 50-70
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_1_a3/
%G ru
%F MM_2020_32_1_a3
A. Yu. Krukovskiy; V. A. Gasilov; Yu. A. Poveschenko; Yu. S. Sharova; L. V. Klochkova. Implementation of the iterative algorithm for numerical solution of 2D magnetogasdynamics problems. Matematičeskoe modelirovanie, Tome 32 (2020) no. 1, pp. 50-70. http://geodesic.mathdoc.fr/item/MM_2020_32_1_a3/

[1] A. A. Samarskii, The Theory of Difference Schemes, CRC Press, Bosa Roca, US, 2001 | MR

[2] G. I. Marchuk, Metody rasshscepleniia, Nauka, M., 1988

[3] A. A. Samarskii, Yu. P. Popov, Raznostnye metody resheniia zadach gazovoi dinamiki, Nauka, M., 1992

[4] I. V. Popov, I. V. Friazinov, Metod adaptivnoi iskusstvennoi viazkosti chislennogo resheniia uravnenii gazovoi dinamiki, KRASAND, M., 2015

[5] M. S. Liou, C. J. Steffen, Jr., “A new flux splitting scheme”, J. Comp. Physics, 107 (1993), 23–39 | DOI | MR | Zbl

[6] L. D. Landau, E. M. Lifshitz, L. P. Pitaevskii, Electrodynamics of Continuous Media, v. 8, 2nd ed., Butterworth-Heinemann, Oxford, 1984 | MR | MR

[7] A. Yu. Krukovskii, “Skhodimost metoda kombinirovannykh progonok dlia raznostnoi skhemy odnomernoi magnitnoi gidrodinamiki”, Keldysh Institute preprints, 1988, 113, 12 pp.

[8] V. A. Gasilov, V. Yu. Guskov, S. V. Zakharov, A. Yu. Krukovskii, T. P. Novikova, Matematicheskaia model i metod rascheta implozii elektrodinamicheski uskoriayemoi plazmy, Preprint FIAN, No 29, M., 1995, 20 pp. | Zbl

[9] A. A. Samarskii, A. V. Gulin, Chislennye metody, Nauka, M., 1989, 415 pp.

[10] J. Duderstadt, G. Moses, Inertial Confinement Fusion, John Wiley and Sons, N-Y, 1982

[11] R. Benattar, P. Ney, A. Nikitin, S. V. Zakharov, A. A. Otochin, A. N. Starostin et all, “Implosion Dynamics of a Radiative Z-Pinch”, IEEE Transactions on Plasma Science, 26:4, special issue on Z-pinch plasmas, August (1998), 1210–1223 | DOI

[12] A. S. Boldarev, E. A. Bolkhovitinov, I. Yu. Vichev, G. S. Volkov, V. A. Gasilov et all, “Methods and Results of Studies of the Radiation Spectra of Megampere Z-Pinches at the Angara-5-1 Facility”, Plasma Physics Reports, 41:2 (2015), 178–181 | DOI | DOI

[13] V. V. Kuzenov, S. V. Ryzhkov, “Numerical modeling of laser target compression in an external magnetic field”, Math. Models Comp. Simul., 10:2 (2018), 255–264 | DOI | MR

[14] A. F. Nikiforov, V. G. Novikov, V. B. Uvarov, Quantum-Statistical Models of Hot Dense Matter. Methods for Computation Opacity and Equation of State, Birkhauser Verlag, Basel–Berlin, 2005, 439 pp. | MR | Zbl