Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_1_a3, author = {A. Yu. Krukovskiy and V. A. Gasilov and Yu. A. Poveschenko and Yu. S. Sharova and L. V. Klochkova}, title = {Implementation of the iterative algorithm for numerical solution of {2D} magnetogasdynamics problems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {50--70}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_1_a3/} }
TY - JOUR AU - A. Yu. Krukovskiy AU - V. A. Gasilov AU - Yu. A. Poveschenko AU - Yu. S. Sharova AU - L. V. Klochkova TI - Implementation of the iterative algorithm for numerical solution of 2D magnetogasdynamics problems JO - Matematičeskoe modelirovanie PY - 2020 SP - 50 EP - 70 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_1_a3/ LA - ru ID - MM_2020_32_1_a3 ER -
%0 Journal Article %A A. Yu. Krukovskiy %A V. A. Gasilov %A Yu. A. Poveschenko %A Yu. S. Sharova %A L. V. Klochkova %T Implementation of the iterative algorithm for numerical solution of 2D magnetogasdynamics problems %J Matematičeskoe modelirovanie %D 2020 %P 50-70 %V 32 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2020_32_1_a3/ %G ru %F MM_2020_32_1_a3
A. Yu. Krukovskiy; V. A. Gasilov; Yu. A. Poveschenko; Yu. S. Sharova; L. V. Klochkova. Implementation of the iterative algorithm for numerical solution of 2D magnetogasdynamics problems. Matematičeskoe modelirovanie, Tome 32 (2020) no. 1, pp. 50-70. http://geodesic.mathdoc.fr/item/MM_2020_32_1_a3/
[1] A. A. Samarskii, The Theory of Difference Schemes, CRC Press, Bosa Roca, US, 2001 | MR
[2] G. I. Marchuk, Metody rasshscepleniia, Nauka, M., 1988
[3] A. A. Samarskii, Yu. P. Popov, Raznostnye metody resheniia zadach gazovoi dinamiki, Nauka, M., 1992
[4] I. V. Popov, I. V. Friazinov, Metod adaptivnoi iskusstvennoi viazkosti chislennogo resheniia uravnenii gazovoi dinamiki, KRASAND, M., 2015
[5] M. S. Liou, C. J. Steffen, Jr., “A new flux splitting scheme”, J. Comp. Physics, 107 (1993), 23–39 | DOI | MR | Zbl
[6] L. D. Landau, E. M. Lifshitz, L. P. Pitaevskii, Electrodynamics of Continuous Media, v. 8, 2nd ed., Butterworth-Heinemann, Oxford, 1984 | MR | MR
[7] A. Yu. Krukovskii, “Skhodimost metoda kombinirovannykh progonok dlia raznostnoi skhemy odnomernoi magnitnoi gidrodinamiki”, Keldysh Institute preprints, 1988, 113, 12 pp.
[8] V. A. Gasilov, V. Yu. Guskov, S. V. Zakharov, A. Yu. Krukovskii, T. P. Novikova, Matematicheskaia model i metod rascheta implozii elektrodinamicheski uskoriayemoi plazmy, Preprint FIAN, No 29, M., 1995, 20 pp. | Zbl
[9] A. A. Samarskii, A. V. Gulin, Chislennye metody, Nauka, M., 1989, 415 pp.
[10] J. Duderstadt, G. Moses, Inertial Confinement Fusion, John Wiley and Sons, N-Y, 1982
[11] R. Benattar, P. Ney, A. Nikitin, S. V. Zakharov, A. A. Otochin, A. N. Starostin et all, “Implosion Dynamics of a Radiative Z-Pinch”, IEEE Transactions on Plasma Science, 26:4, special issue on Z-pinch plasmas, August (1998), 1210–1223 | DOI
[12] A. S. Boldarev, E. A. Bolkhovitinov, I. Yu. Vichev, G. S. Volkov, V. A. Gasilov et all, “Methods and Results of Studies of the Radiation Spectra of Megampere Z-Pinches at the Angara-5-1 Facility”, Plasma Physics Reports, 41:2 (2015), 178–181 | DOI | DOI
[13] V. V. Kuzenov, S. V. Ryzhkov, “Numerical modeling of laser target compression in an external magnetic field”, Math. Models Comp. Simul., 10:2 (2018), 255–264 | DOI | MR
[14] A. F. Nikiforov, V. G. Novikov, V. B. Uvarov, Quantum-Statistical Models of Hot Dense Matter. Methods for Computation Opacity and Equation of State, Birkhauser Verlag, Basel–Berlin, 2005, 439 pp. | MR | Zbl