Difference scheme with a symmetry analizer for equations of magnetohydrodynamics
Matematičeskoe modelirovanie, Tome 32 (2020) no. 12, pp. 65-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proposes a computational algorithm for the numerical simulation of twodimensional MHD flows using a symmetry analyzer as an element of the numerical method. The algorithm is based on a finite-volume Godunov-type scheme with an approximate solution of the Riemann problem for calculating flows. A polar grid is used, but the equations of momentum and magnetic induction are approximated in a Cartesian coordinate system. It is assumed that the flows are either predominantly homogeneous plane-symmetric, or predominantly axisymmetric relative to the grid axis. To reconstruct vector variables in the computational cells, a symmetry analyzer is used, which makes it possible to locally classify the flow as one of the indicated types. Depending on what type the vector field will be assigned to, the corresponding components are used for its reconstruction.
Keywords: magnetohydrodynamics, Godunov-type difference scheme, symmetry analyzer.
@article{MM_2020_32_12_a5,
     author = {G. V. Ustyugova and A. V. Koldoba},
     title = {Difference scheme with a symmetry analizer for equations of magnetohydrodynamics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--80},
     publisher = {mathdoc},
     volume = {32},
     number = {12},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_12_a5/}
}
TY  - JOUR
AU  - G. V. Ustyugova
AU  - A. V. Koldoba
TI  - Difference scheme with a symmetry analizer for equations of magnetohydrodynamics
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 65
EP  - 80
VL  - 32
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_12_a5/
LA  - ru
ID  - MM_2020_32_12_a5
ER  - 
%0 Journal Article
%A G. V. Ustyugova
%A A. V. Koldoba
%T Difference scheme with a symmetry analizer for equations of magnetohydrodynamics
%J Matematičeskoe modelirovanie
%D 2020
%P 65-80
%V 32
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_12_a5/
%G ru
%F MM_2020_32_12_a5
G. V. Ustyugova; A. V. Koldoba. Difference scheme with a symmetry analizer for equations of magnetohydrodynamics. Matematičeskoe modelirovanie, Tome 32 (2020) no. 12, pp. 65-80. http://geodesic.mathdoc.fr/item/MM_2020_32_12_a5/

[1] S. K. Godunov i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp.

[2] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems, Chapman Hall, Boca Raton, 2001 | MR | MR | Zbl

[3] V. M. Goloviznin, B. N. Chetverushkin, “New generation algorithms for computational fluid dynamics”, Comp. Math. Math. Phys., 58:8 (2018), 1217–1225 | DOI | MR | Zbl

[4] M. D. Bragin, Yu. A. Kriksin, V. F. Tishkin, “Discontinuous Galerkin Method with an Entropic Slope Limiter for Euler Equations”, Math. Models Comp. Simul., 12:5 (2020), 824–833 | DOI | Zbl

[5] A. V. Koldoba, G. V. Ustyugova, “Difference Scheme with a Symmetry Analyzer for Equations of Gas Dynamics”, Math. Models Comp. Simul., 12:2 (2020), 125–132 | DOI | MR | Zbl

[6] T. Miyoshi, K. J. Kusano, “A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics”, Journal of Computational Physics, 208:1 (2005), 315–344 | DOI | MR | Zbl

[7] D. S. Balsara, D. S. Spicer, “A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magneto-hydrodynamic simulations”, Journal of Computational Physics, 149:2 (1999), 270–292 | DOI | MR | Zbl

[8] I. B. Petrov, A. I. Lobanov, Lektsii po vychislitelnoi matematike, Internet-Universitet Infomatsionnykh Tekhnologii, M., 2006, 523 pp.

[9] V. A. Gasilov, A. S. Boldarev, S. V. Dyachenko i dr., “Paket prikladnyh program MARPLE3D dlya modelirovaniya na vysokoproizvoditelnyh EVM impulsnoy magnitouskorennoy plazmy”, Matematicheskoe modelirovanie, 24:1 (2012), 55–87 | Zbl