Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_12_a1, author = {M. Ovchinnikov and S. Tkachev and A. Shestoperov}, title = {Mathematical model of satellite with arbitrary number of flexible appendages}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {14--28}, publisher = {mathdoc}, volume = {32}, number = {12}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_12_a1/} }
TY - JOUR AU - M. Ovchinnikov AU - S. Tkachev AU - A. Shestoperov TI - Mathematical model of satellite with arbitrary number of flexible appendages JO - Matematičeskoe modelirovanie PY - 2020 SP - 14 EP - 28 VL - 32 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_12_a1/ LA - ru ID - MM_2020_32_12_a1 ER -
M. Ovchinnikov; S. Tkachev; A. Shestoperov. Mathematical model of satellite with arbitrary number of flexible appendages. Matematičeskoe modelirovanie, Tome 32 (2020) no. 12, pp. 14-28. http://geodesic.mathdoc.fr/item/MM_2020_32_12_a1/
[1] P. Gasbarri, R. Monti, M. Sabatini, “Very large space structures: Non-linear control and robustness to structural uncertainties”, Acta Astronautica, 93 (2014), 252–265 | DOI
[2] M. Yu. Ovchinnikov, S. S. Tkachev, A. I. Shestopyorov, “Algorithms of Stabilization of a Spacecraft with Flexible Elements”, J. of Comp. and Syst. Sci. Intern., 58 (2019), 474–490 | DOI | Zbl
[3] D. Ivanov, M. Koptev, M. Ovchinnikov, S. Tkachev, N. Proshunin, M. Shachkov, “Flexible microsatellite mock-up docking with non-cooperative target on planar air bearing test bed”, Acta Astronautica, 153 (2018), 357–366 | DOI
[4] T. R. Kane, D. A. Levinson, “Formulation of equations of motion of complex spacecraft”, Journal of Guidance, Control, and Dynamics, 3 (1980), 99–112 | DOI | MR | Zbl
[5] L. Meirovitch, R. D. Quinn, “Equations of motion for maneuvering flexible spacecraft”, Journal of Guidance, Control, and Dynamics, 10 (1987), 453–465 | DOI | Zbl
[6] P. Santini, P. Gasbarri, “General background and approach to multibody dynamics for space applications”, Acta Astronautica, 64 (2009), 1224–1251 | DOI
[7] P. Santini, “Stability of Flexible Spacecrafts”, Acta Astronautica, 3 (1976), 685–713 | DOI | Zbl
[8] N. V. Banichuk, I. I. Karpov, D. M. Klimov, A. P. Markeev, B. N. Sokolov, A. V. Sharoniuk, Mekhanika bolshikh kosmicheskikh konstruktsi, Factorial, M., 1997, 302 pp.
[9] A. A. Shabana, “Flexible multibody dynamics: review of past and recent developments”, Multibody System Dynamics, 1 (1997), 189–222 | DOI | MR | Zbl
[10] M. Yu. Ovchinnikov, S. S. Tkachev, D. S. Roldugin, A. B. Nuralieva, Y. V. Mashtakov, “Angular Motion Equations for a Satellite with Hinged Flexible Solar Panel”, Acta Astronautica, 128 (2016), 534–539 | DOI
[11] A. A. Shabana, Dynamics of Multibody Systems, 4-nd Ed., Cambridge Univ. Press, Cambridge, 2014, 384 pp. | MR
[12] A. Iu. Kargashin, S. A. Mirer, V. V. Sazonov, “Matematicheskaia model manipuliatora s gruzom”, Preprinty IPM im. M.V. Keldysha, 1981, 169
[13] D. Iu. Pogorelov, Vvedenie v modelirovanie dinamiki sistem tel, Uchebnoe posobie, BGTU, Briansk, 1997, 164 pp.
[14] R. Canavin, P. W. Likins, “Floating reference frames forexible spacecrafts”, Journal of Spacecraft and Rockets, 14:12 (1977), 724–732 | DOI
[15] L. V. Dokuchaev, “Nelineinaia dinamika uprugogo letatelnogo apparata”, Itogi nauki I tekhniki. Obshchaia mekhanika, 5, VINITI, M., 1982, 135–197
[16] A. P. Markeev, Teoreticheskaya mekhanika, NITs «Reguliarnaia I khaoticheskaia dinamika», M.–Izhevsk, 2007, 592 pp.
[17] P. Santini, P. Gasbarri, “Dynamics of multibody systems in space environments; Lagrangian vs. Eulerian approach”, Acta Astronautica, 54 (2003), 1–24 | DOI
[18] A. B. Nuralieva, S. S. Tkachev, “Matematicheskaia model sputnika s gibkoi solnechnoi paneliu na upravliaemom sharnire”, Preprinty IPM im. M.V. Keldysha, 2015, 061, 19 pp.