Mathematical model of satellite with arbitrary number of flexible appendages
Matematičeskoe modelirovanie, Tome 32 (2020) no. 12, pp. 14-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the development, implementation and verification of a mathematical model of a spacecraft with an arbitrary number of large flexible elements. The model of the spacecraft is derived by using D'Alembert's principle and is written in generalized coordinates. The flexible elements can be attached to the satellite main body cantilever and using 1DOF and 2DOF hinges. Due to the method used in the paper for deriving equations of motion, the proposed satellite model enables changing the number of flexible elements and types of joints without rewriting the equations of motion in the symbolic form. It ensures the model flexibility from the perspective of the software implementation.
Mots-clés : satellite, joint, orbital motion, attitude motion, eigenmode
Keywords: mathematical model, system of flexible bodies, D'Alembert's principle, deformation, verification.
@article{MM_2020_32_12_a1,
     author = {M. Ovchinnikov and S. Tkachev and A. Shestoperov},
     title = {Mathematical model of satellite with arbitrary number of flexible appendages},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {14--28},
     publisher = {mathdoc},
     volume = {32},
     number = {12},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_12_a1/}
}
TY  - JOUR
AU  - M. Ovchinnikov
AU  - S. Tkachev
AU  - A. Shestoperov
TI  - Mathematical model of satellite with arbitrary number of flexible appendages
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 14
EP  - 28
VL  - 32
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_12_a1/
LA  - ru
ID  - MM_2020_32_12_a1
ER  - 
%0 Journal Article
%A M. Ovchinnikov
%A S. Tkachev
%A A. Shestoperov
%T Mathematical model of satellite with arbitrary number of flexible appendages
%J Matematičeskoe modelirovanie
%D 2020
%P 14-28
%V 32
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_12_a1/
%G ru
%F MM_2020_32_12_a1
M. Ovchinnikov; S. Tkachev; A. Shestoperov. Mathematical model of satellite with arbitrary number of flexible appendages. Matematičeskoe modelirovanie, Tome 32 (2020) no. 12, pp. 14-28. http://geodesic.mathdoc.fr/item/MM_2020_32_12_a1/

[1] P. Gasbarri, R. Monti, M. Sabatini, “Very large space structures: Non-linear control and robustness to structural uncertainties”, Acta Astronautica, 93 (2014), 252–265 | DOI

[2] M. Yu. Ovchinnikov, S. S. Tkachev, A. I. Shestopyorov, “Algorithms of Stabilization of a Spacecraft with Flexible Elements”, J. of Comp. and Syst. Sci. Intern., 58 (2019), 474–490 | DOI | Zbl

[3] D. Ivanov, M. Koptev, M. Ovchinnikov, S. Tkachev, N. Proshunin, M. Shachkov, “Flexible microsatellite mock-up docking with non-cooperative target on planar air bearing test bed”, Acta Astronautica, 153 (2018), 357–366 | DOI

[4] T. R. Kane, D. A. Levinson, “Formulation of equations of motion of complex spacecraft”, Journal of Guidance, Control, and Dynamics, 3 (1980), 99–112 | DOI | MR | Zbl

[5] L. Meirovitch, R. D. Quinn, “Equations of motion for maneuvering flexible spacecraft”, Journal of Guidance, Control, and Dynamics, 10 (1987), 453–465 | DOI | Zbl

[6] P. Santini, P. Gasbarri, “General background and approach to multibody dynamics for space applications”, Acta Astronautica, 64 (2009), 1224–1251 | DOI

[7] P. Santini, “Stability of Flexible Spacecrafts”, Acta Astronautica, 3 (1976), 685–713 | DOI | Zbl

[8] N. V. Banichuk, I. I. Karpov, D. M. Klimov, A. P. Markeev, B. N. Sokolov, A. V. Sharoniuk, Mekhanika bolshikh kosmicheskikh konstruktsi, Factorial, M., 1997, 302 pp.

[9] A. A. Shabana, “Flexible multibody dynamics: review of past and recent developments”, Multibody System Dynamics, 1 (1997), 189–222 | DOI | MR | Zbl

[10] M. Yu. Ovchinnikov, S. S. Tkachev, D. S. Roldugin, A. B. Nuralieva, Y. V. Mashtakov, “Angular Motion Equations for a Satellite with Hinged Flexible Solar Panel”, Acta Astronautica, 128 (2016), 534–539 | DOI

[11] A. A. Shabana, Dynamics of Multibody Systems, 4-nd Ed., Cambridge Univ. Press, Cambridge, 2014, 384 pp. | MR

[12] A. Iu. Kargashin, S. A. Mirer, V. V. Sazonov, “Matematicheskaia model manipuliatora s gruzom”, Preprinty IPM im. M.V. Keldysha, 1981, 169

[13] D. Iu. Pogorelov, Vvedenie v modelirovanie dinamiki sistem tel, Uchebnoe posobie, BGTU, Briansk, 1997, 164 pp.

[14] R. Canavin, P. W. Likins, “Floating reference frames forexible spacecrafts”, Journal of Spacecraft and Rockets, 14:12 (1977), 724–732 | DOI

[15] L. V. Dokuchaev, “Nelineinaia dinamika uprugogo letatelnogo apparata”, Itogi nauki I tekhniki. Obshchaia mekhanika, 5, VINITI, M., 1982, 135–197

[16] A. P. Markeev, Teoreticheskaya mekhanika, NITs «Reguliarnaia I khaoticheskaia dinamika», M.–Izhevsk, 2007, 592 pp.

[17] P. Santini, P. Gasbarri, “Dynamics of multibody systems in space environments; Lagrangian vs. Eulerian approach”, Acta Astronautica, 54 (2003), 1–24 | DOI

[18] A. B. Nuralieva, S. S. Tkachev, “Matematicheskaia model sputnika s gibkoi solnechnoi paneliu na upravliaemom sharnire”, Preprinty IPM im. M.V. Keldysha, 2015, 061, 19 pp.